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Abstract

We propose an analytic, time-variant model that conservatively evaluates the increase in reli-

ability achievable when a component is equipped with a Prognostics and Health Management

system of known performance metrics. The reliability model builds on metrics of literature

and is applicable to di�erent industrial contexts. A simulated case study concerning crack

propagation in a mechanical component is considered to validate the proposed model.
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Symbols & Acronyms

∆t Time interval between two successive Remaining Useful Life (RUL) predictions

λ Time window modi�er, such that tλ = Tpr + λ(Tf − Tpr); λ ∈ [0, 1]

λ∗ Time from which the values of the performance metrics are estimated

bxc Integer part of x; that is, n ≤ x < n+ 1, x ∈ R, n ∈ N

N (µ, σ2) Normal distribution with mean µ and variance σ2

U(a, b) Uniform distribution between a and b
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Υλ Point summarizing the uncertainty in Rλ (e.g., mean, median, 10th percentile, etc.)

DTD Detection Time Delay, Tpr − Td
fDTD probability density function (pdf) of DTD

fRλ pdf of the predicted RUL at the time window indicated by λ

fTd pdf of time Td

fTφ pdf of Tφ

fTf pdf of Tf

FN False Negatives

FP False Positives

h∗ Index of the �rst time channel at which a missing alarm is risky

k∗ Index of the �rst time channel at which the decision to remove the system from operation

can be taken

m Empirical estimate of metric M

N Number of maximum RUL predictions before failure

Pα
λ α-λ performance

Rλ Uncertain predicted RUL at time indicated by λ

RUL∗λ Actual RUL at the time indicated by λ

Td Time instant at which the system reaches the detection threshold

Tf Time instant at which the system reaches the failure threshold

Tφ Length of the time interval Tf − Td
Tpr Time of the �rst RUL prediction

1 Introduction

In the last decade, Prognostics and Health Management (PHM) has often been proposed as an

e�ective technology to respond to the reliability challenges posed by the modern safety-critical

components and systems (e.g., nuclear power plants, oil&gas assets, etc.), in which failures can
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result not only in signi�cant costs, but also in life-threatening consequences such as explosions and

natural disasters.

PHM allows in principle monitoring the system health condition, predicting its Remaining Useful

Life (RUL) and, ultimately, preventing catastrophic failures ([1], [2], [3], [4], [5]). However, in prac-

tice it is important to know which are the reliability and availability of a component or system.

In this respect, to the authors' best knowledge a modeling framework that allows translating the

PHM contribution into the component or system reliability is still lacking.

A few works have attempted to evaluate the in�uence of PHM on system Life Cycle Cost (LCC,

[6], [7], [8], [9], [10], [11]), looking at the economic bene�ts of PHM in terms of increase of compo-

nent or system availability. On the other hand, for safety-critical applications PHM is expected to

mainly increase the component or system reliability (rather than availability). PHM helps avoiding

over-estimations of the actual component RUL, which may lead to accidents with possible conse-

quences on the asset, the environment and the public.

To evaluate the added value of the PHM technology on system reliability, it is necessary to char-

acterize the performance of the PHM adopted. In this respect, a variety of performance metrics

and indicators have been introduced for detection (i.e., the recognition of a deviation from the

normal operating conditions causing such deviation, e.g., [8], [12]), diagnostics (i.e., the character-

ization of the abnormal state, e.g., [13]) and prognostics, (i.e., the prediction of the evolution of

the abnormal state up to failure, e.g., [2], [14], [15]). The original contribution of this work is to

propose a general modeling and decision framework for linking PHM metrics of literature to the

component reliability. This framework also allows accounting for the decision criterion adopted

for maintenance (overhaul), which heavily depends on the risk attitude of the decision maker.

The proposed reliability model is validated by way of a simulated case study concerning the crack

propagation in a mechanical component, which requires to estimate the values of the relevant PHM

metrics.

Although various de�nitions of performance metrics exist in the PHM literature, a detailed proce-

dure to estimate their values is still lacking, apart from a few metrics such as the MTTF [16]. For

this, a further original contribution of our work is the Monte Carlo (MC) procedure proposed to

estimate the performance metrics encoded in the developed reliability model.

The remainder of the paper is organized as follows: Section 2 brie�y introduces the general frame-

work; in Section 3, the impact of a PHM tool on system reliability is modeled; Section 4 illustrates

a simulated case study concerning the crack propagation in a mechanical component; Section 5

validates the developed model by way of the simulated case study; Section 6 concludes the work.
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2 Modeling framework

We consider a degrading component, whose degradation state is monitored every ∆t units of time

with respect to a continuous indicator variable (Figure 1). The degradation process is stochastic

for the degradation state and two thresholds are considered: the detection threshold, which mainly

depends on the characteristics of the instrument used for monitoring the degradation variable (for

example, considering that the instrument is not capable of detecting the degradation state for val-

ues below such threshold), and the failure threshold, above which the component does not function

any more or, more practically, must be maintained or replaced for avoiding a catastrophic failure.

The uncertainty in the time instant Td at which the component reaches the �rst threshold is

described by the probability density function (pdf) fTd . If no action is taken, the component

continues its degrading up to failure occurring at time Tf ; its uncertainty is described by pdf fTf .

Finally, we also consider the random variable Tφ = Tf − Td, whose pdf is fTφ .
Realistically, it is assumed that detection is not perfect. Thus, metrics of literature are exploited

to characterize the detection performance. In this respect, the following two are widely used in

practice: false positive probability (i.e., the probability of triggering undue alarms) and false nega-

tive probability (i.e., the probability of missing alarm when required) ([8]). In addition, Detection

Time Delay (DTD, [12]) is a detection metric which measures the interval from the time when

the detectable degradation state is reached by the component up to its detection. We use this

performance metric, due to two main reasons: on one hand, DTD is viewed as a false negative

indicator which depends on time (i.e., alarms are missing up to DTD); on the other hand, the

DTD values are dependent on the detection algorithm settings, which can be adjusted so that the

false positive probability is negligible in the inital part of the component life ([12]). This way, the

model development is simpli�ed. To be realistic, we assume that DTD is a�ected by uncertainty,

whose pdf is fDTD(δ).

In this setting, the PHM system starts to predict the RUL at time Tpr = (bTd+DTD
∆t

c+ 1)∆t, where

b◦c indicates the integer part of its argument. The number of predictions that the PHM can

perform before failure is N = bTf−Tpr
∆t
c. From now on, it is assumed that the system actually fails

at time Tpr +N∆t, instead of Tf ; the smaller ∆t, the smaller the approximation.

Notice that we have assumed, for simplicity, that the considered component is a�ected by a single

failure mode, so that we do not have the need of tackling the issue of embedding diagnostic met-

rics into the reliability model, and of considering all scenarios originating from decisions based on

erroneous diagnoses of the failure mode. Such diagnostic issue is left for the future research work.

Finally, notice also that, in practice, both detection and failure thresholds may not be easily de-

termined. For example, in helicopter applications, PHM systems (also called Health and Usage

Monitoring System, HUMS) are mainly based on vibration monitoring to infer the equipment
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health ([17], [18], [19]); thus, there is no simple way to de�ne a threshold directly related to failure.

Similar challenges are encountered in the packaging industry, where the failure conditions of com-

ponents may not be precisely known [20]. Nonetheless, the approach proposed in the present work

applies to any system, provided that some criterion to de�ne the thresholds exists. The de�nition

of such criterion is out of the scope of this work, where we assume that the Decision Maker (DM)

has already de�ned a threshold coherent with his/her objective.
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Figure 1: Model setting description; h = 4, α = 0.1, N1 = 11 and N2 = 19

3 Reliability Model

In this Section, we illustrate the mathematical model developed to evaluate the increase in system

reliability brought by a PHM system.

We assume that the PHM-equipped component is stopped when the (100 − β)th percentile (e.g.,

100−90 = 10th) of the currently predicted RUL pdf is smaller than h ·∆t: the larger the value of β,
the smaller the value of the predicted RUL percentile, the more risk-averse the decision. Similarly,

the larger the value of h, the more cautious the decision maker.

To set h and β in real industrial applications, it should be kept in mind that the value of h strongly

depends on the time required to safely remove the component from operation (e.g., time required

for system shutdown), whereas β relates to the risk associated to the failure (e.g., β = 5 is a very
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conservative value, suitable for safety critical application). To help the DM to set h and β we can

use the proposed reliability model in a `reverse' way, to �nd the combinations of values of h and

β that allow meeting the system reliability requirements, also taking into account the considered

PHM performance values. Furthermore, we can evaluate the sensitivity of the component reliabil-

ity value to the selected applicable values of h and β, to �nd the settings which are less sensitive

to the possible variability of the metrics due to the uncertainty in their estimations.

To evaluate the probability of removing the system from operation before failure, we need to con-

sider a time-variant prognostic performance index and link it to the probability of being in stopping

conditions.

Among the prognostic metrics available in the literature ([14], [15]), the most suitable is the α−λ
performance index, Pα

λ , which is a time-variant accuracy indicator ranging in [0, 1]; this allows

us to give Pα
λ a probabilistic interpretation. Various de�nitions of Pα

λ have been proposed in the

literature ([14], [15]), referring to either point-wise or pdf RUL predictions. In this work, we give

the following de�nition, derived from [14] (Figure 2).

Td Tpr tλ1 tλ2 tλ3 Tf

Tf

R
U

L

time

fRλ1
|α

+
λ1

α−
λ1

≤ β: Πα
λ1

= 0

fRλ3
|α

+
λ3

α−
λ3

≥ β:

Πα
λ3

= 1

Figure 2: Pα
λ description

Consider the indicator variable:

Πα
λ =

1, if fRλ|
α+
λ

α−
λ

≥ β

0, else
(1)
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where fRλ is the pdf of the RUL Rλ predicted at time tλ = Tpr + λ(Tf −Tpr), λ ∈ [0, 1], whereas α

is a user-de�ned parameter which indicates the required tolerance around the value of RUL∗(e.g.,

α ∈ [0.05, 0.2]).

Then, Pα
λ is the mean value of Πα

λ , i.e., P
α
λ = E[Πα

λ ].

Namely, during the test campaign of the algorithm, in which the value of the prognostic perfor-

mance metrics are computed, the algorithm is run on the working system an as large as possible

number of times. Then, at any trial, Πα
λ is set to 1 if the RUL pdf predicted at tλ has an area larger

than β between α−λ = (1−α)RUL∗λ and α
+
λ = (1 +α)RUL∗λ, being RUL

∗
λ the actual RUL at time

tλ, i.e., the time up to reaching the failure threshold or the threshold above which a maintenance

action must be performed, depending on the application (Figure 2). The RUL∗ value is exactly

known at the end of every trial.

Pα
λ is, then, practically given by the estimate pαλ , which is calculated by averaging the values Πα

λ

gathered from di�erent trials of the PHM tool at as many as possible instants tλ. The larger the

value of Pα
λ , the better the PHM system prediction capability. For more details on pαλ computation,

see Section 5.2.

Notice that when Πα
λ = 0, no inference can be made about the value of the uncertain RUL pre-

diction: one only knows that the area overlapping [α−λ , α
+
λ ] is smaller than β, with no further

information about either the actual extent of this overlapping or the portion of probability mass

located below α−λ , above α
+
λ or in an in-between position.

Notice also that when Πα
λ = 1, then the interval [(1 − α)RUL∗λ, (1 + α)RUL∗λ] is the 2-sided β

con�dence interval of the failure time predicted at time tλ. However, for the prediction metrics to

be applicable for supporting risk-averse decision making, we need to refer to an upper bound of

the probability of over-estimating the RUL (i.e., of not stopping the component), rather than to

a 2-sided con�dence interval. To cope with this situation, we combine Pα
λ with the False Positive

and False Negative metrics [15], which are time-variant indexes de�ned as, respectively:

FNλ = E[ΦNλ], ΦNλ =

1, if Υλ −RUL∗λ > dthresholdλ

0, else
(2)

FPλ = E[ΦPλ], ΦPλ =

1, if Υλ −RUL∗λ < −dthresholdλ

0, else
(3)

where Υλ is a point estimate of the predicted RUL distribution (e.g., the mean, the median or

any other percentile of Rλ, etc.) and dthresoldλ is a user-de�ned threshold value, which depends

on the PHM application. Proceeding exactly in the same way as that of pαλ , we will consider
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the estimates fnλ and fpλ of FNλ and FPλ, respectively, which are given by the corresponding

empirical averages of ΦNλ and ΦPλ over the available number of test trials, achieved through an

algorithm test campaign. As mentioned above, notice that when performing a PHM test, RUL∗

is exactly known at the end of every trial. This value is, then, used to estimate ΦNλ, ΦPλ and the

other variables of the model, as shown in Section 5.2.

In our setting, Υλ is the (1−β)th percentile of fRλ and d
threshold
λ = α×RUL∗λ. Then, FPλ measures

the average portion of times in which Υλ is below α−λ = (1 − α)RUL∗λ and, thus, it becomes an

indicator of how much conservative our PHM predictions are at time tλ. Similarly, FNλ indicates

the riskiness of the PHM algorithm.

Based on these considerations, we can build the reliability model of a PHM-equipped component

with estimated values pαλ , fnλ, fpλ of metrics Pα
λ , FNλ, FPλ, respectively. To do this, we divide

the time horizon into three regions (Figure 3):

1. The region in proximity of failure, which is de�ned by the time indexes k ≥ N − h such

that (1 + α)RUL∗λ ≤ h∆t, where RUL∗λ = (N − h)∆t. This is the same as k ≥ h∗, where

h∗ = bN − h
1+α
c. Geometrically, this region corresponds to time values on the right of

the intersection between the error upper bound line (1 + α)RUL∗λ and the horizontal line

positioned at RUL = h∆t (Figure 3).

2. The safe region, which is indicated by time instants k < k∗, where k∗ geometrically corre-

sponds to the prediction most proximal to the intersection between the prediction error lower

bound line (1− α)RUL∗λ and the horizontal line at RUL = h∆t (Figure 3).

3. The in-between region, identi�ed by k∗ ≤ k < h∗.

With respect to region 1, we can note that to have a failure, the alarm is required to be missing

h∗ consecutive times. Now, if Πα
λ = 1, then the alarm is triggered and the component failure is

avoided. On the contrary, if Πα
λ = 0, the necessary condition to not activate the alarm is that the

RUL is over-estimated. This situation occurs with probability (1 − Pα
λ )FNλ ' (1 − pαλ)fnλ. We

assume that this probability value also describes the uncertainty in having missing alarms; this is a

very conservative assumptions: the closer the current time to failure, the larger the over-estimation

error required to not trigger the alarm (predictions must be above the h∆t threshold (see Figure

3)).

With respect to the safe region, we �rst note that whichever the value of Πα
λ , an over-estimation

of RUL∗λ leads to not stopping the system before failure. This does not entail any risk of missing

stops. On the contrary, an under-estimation of the RUL could lead to component stop. In the risk-

averse setting we are dealing with, the anticipated maintenance is bene�cial for system reliability,

as it avoids component failure. For this, we conservatively assume that in this left-most region the
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PHM system never stops the component.

Finally, with respect to the in-between time horizon region, to rigorously derive the probability of

not stopping the system, we have to give account to the fact that some extreme cases may occur,

where even if Πα
λ = 1, the 1− β probability mass and, thus, the (1− β)th percentile, is positioned

above h∆t. For example, Figure 3 shows the situation where tλ1 = (N − h)∆t and all the β mass

is concentrated between RUL∗λ = h∆t and α+
λ . In this case, PHM will not advice to stop the

component at tλ1 . Thus, we conservatively assume that in this region the component does not

undergo a maintenance action as long as Πα
λ = 1.

On the contrary, when Πα
λ = 0, which occurs with probability (1−Pα

λ ), the following three possible

situations can occur:

• The (1 − β)th percentile, Υλ, is smaller than (1 − α)RUL∗λ. In this situation, which occurs

with probability (1−Pα
λ )FPλ, even if we conservatively assume that the (1− β)th percentile

takes the largest possible value (i.e., Υλ = (1− α)RUL∗λ), the component is stopped as this

time is smaller than h∆t.

• With probability (1−Pα
λ )FNλ, Υλ will be above (1 +α)RUL∗λ. In this situation, we will not

stop the component.

• With probability 1− FNλ − FPλ we are in the situation in which the predicted RUL value

is between [α−λ α
+
λ ]. To be conservative, we assume that also in this case we do not remove

the component from operation.

To conclude, a conservative estimation of the stop probability in the time window [Tpr+k∗∆t, Tpr+

h∗∆t] is (1− Pα
λ )FPλ ' (1− pαλ)fpλ.
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Figure 3: Regions partitioning the time horizon and examples of possible RUL predictions

Figure 1 brie�y summarizes the considerations proposed above. Two di�erent trials of the same

PHM-equipped component are plotted over time, which are indicated with superscript 1 (continu-

ous line) and 2 (dashed line). T 1
pr and T

2
pr indicate the corresponding �rst prediction times, whereas

k∗1 and k∗2 represent the �rst time instants where the system can be stopped with probabilities

(1−Pα
λ )FPλ; h

∗1 and h∗2 are the �rst time indexes from which the system is stopped with proba-

bility Pα
k
N

+ (1−Pα
k
N

)(1−FN k
N

). Finally, T 1
f and T 2

f represent the last possible prediction instants

before failure and are considered as failure times within our framework.

Based on the considerations above, it is now possible to compute the unreliability U(t) at time t,

which is here de�ned as the probability of reaching the failure threshold before t:

U(t) = P(Tf ≤ t ∩ system not stopped before t ;α, β,∆t, h, fn, fp, pαλ) =
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P(Tf ≤ t | system not stopped before t ;α, β,∆t, h, fn, fp, pαλ)×

P(system not stopped before t ;α, β,∆t, h, fn, fp, pαλ)

where α, β,∆t, h, fn, fp, pαλ explicitly indicate the dependence of the unreliability value on the

parameters determining the performance of the PHM system.

Notice that there are several de�nitions of reliability [21]. Di�erently from the `traditional' de�-

nitions, in which the unreliability is the CDF of the failure time and, thus, it tends to one as t

increases (i.e., the component will always fail, [21], [22]), in this case we are compelled to con-

sider

lim
t→∞

U(t) = P(system not stopped before t ;α, β,∆t, h, fn, fp, pαλ) ≤ 1

The di�erence is due to the fact that if the component is removed from operation before failure,

then its failure time will no-longer exist and the `traditional' de�nitions are no longer applicable.

That is, the PHM-equipped component can be framed as a three-state system, the possible states

being: Working, Failed and Removed (Figure 4), in which U(t) represents the probability of

having a transition from Working to Failed before time t.

Working

Failed

K(t, Failed)

Removed

K(t,
Re

move
d)

Figure 4: Three-state system

According to this view, we derive U(t) from the probabilistic transport kernel K(t, Failed|t′, s′),
which is de�ned as the probability density that the component makes the next transition between

t and t+ dt toward state Failed [23], provided that the previous transition has occurred at time t′

and that the system had entered in state s′. However, in our case we assume that the component
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always starts at t = 0 in state Working. For this, we will indicate the kernel as K(t, Failed),

without the conditioning event.

To calculateK(t, Failed), we �rst �rst calculate the failure transportation kernel given a realization

δ from fDTD:

K(t, Failed|δ;α, β,∆t, h, fn, fp, pαλ) =

∫ t

t−δ
fTd(τ)fTφ(t− τ)dτ+

+

∫ t−δ

0

fTd(τ)fTφ(t− τ)
h∗−1∏
k=k∗

[1− (1− pαk
N

)fp k
N

]
N−1∏
k=h∗

[(1− pαk
N

)fn k
N

]dτ (4)

In other words, it is assumed that a failure occurs when one out of the following conditions is

satis�ed, which are represented by the �rst and the second addend of Equation 4, respectively:

1. The component fails before PHM alerts the detection threshold (detection error); this may

happen in case the component fails abruptly.

2. PHM correctly detects, with detection delay δ, that the degradation has reached the detection

threshold but, then, over-estimates the actual failure time Tf (prognostic error); this happens

after Tpr+k
∗∆t (i.e., the �rst prediction instant where the stopping decision should be made),

with probability 1− (1− pαk
N

)fp k
N
and with probability (1− pαk

N

)fn k
N
from Tpr + h∗∆t on.

To remove the dependence from δ, we integrate Equation 4 over the distribution of DTD:

K(t, Failed;α, β,∆t, h, fn, fp, pαλ) =

∫ ∞
0

K(t, Failed|δ;α, β,∆t, h, fn, fp, pαλ)fDTD(δ)dδ (5)

Generally speaking, the integral of K(t, Failed) over the time interval [t1, t2] gives the probability

of failure in that time span [23]. Then, Equation 5 allows estimating the component unreliability

as:

U(t) =

∫ t

0

K(τ, Failed;α, β,∆t, h, fn, fp, pαλ)dτ (6)

Finally, notice that the developed model allows considering also the case where there is no ad-

vantage in removing the component from operation the last h instants: in this case, stopping the

component in the third region (region 1 in Figure 3) is equivalent to having a failure.

4 Case study

In this Section, we illustrate the application of the modeling framework developed to a component

a�ected by fatigue degradation, described by the Paris Erdogan (PE) model ([2], [24], Figure

5):
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1. The crack length xi reaches the �rst threshold, x = 1mm, according to the following equation:

xi+1 = xi + a× eω1
i

where a = 0.003 is the growth speed parameter and ω1
i ∼ N (−0.625, 1.5) models the uncer-

tainty in the speed values. The uncertainty in the arrival time at x = 1 is described by pdf

fTd(t).

2. The crack length reaches the failure threshold x = 100mm according to the following equa-

tion:

xi+1 = xi + C × eω2
i (η
√
xi)

n

where C = 0.005 and n = 1.3 are parameters related to the component material properties,

and are determined by experimental tests; η = 1 is a constant related to the characteristics

of the load and the position of the crack and ω2
i ∼ N (0, 1) describes the uncertainty in the

crack growth speed values. The uncertainty in the arrival time at x = 100 is described by

pdf fTf (t).

The numerical values are taken from [2].

Td Tf
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Figure 5: Crack propagation process: example

5 Validation of the reliability model

The aim of this Section is to validate the reliability model developed in Section 3 by way of the

case study presented above. To do this, we carry out the following steps, which are detailed in the

next Sections:

• Choose the prognostic and detection algorithms that are assumed to be implemented in the

PHM system.
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• Estimate the performance values fpλ, fnλ and p
α
λ .

• Estimate the integral in Equation 6.

• Estimate the unreliability in the `on-line' setting, in which the crack propagation is simulated

together with the selected prognostic and detection algorithms, and with the decisions based

on their outcomes as well.

5.1 Algorithms

The prognostic algorithm we rely on is Particle Filtering (PF, [25], [26]), which has been estab-

lished as the de-facto state of the art in failure prognostics [27]. Brie�y, at any time instant PF

estimates the pdf of the degradation state of the component (i.e., its crack depth in our case) with

a set of weighted particles, which constitute a probability mass function (pmf). When a measure

of the crack depth is acquired, such pmf is adjusted in a Bayesian perspective, so that the weights

related to particles which are near the acquired data are augmented.

The PF algorithm chosen for our application is the same as that used in [1]; it relies on a simpli�ed

approach for predicting the evolution of the crack, which does not give full account to the uncer-

tainty in the particle evolution ([1]). Certainly, more re�ned versions of PF could be considered to

improve the prognostic performance, but this is out of the scope of this work: our aim is to check

whether the model developed in Section 3 provides conservative estimates of the component relia-

bility for a given set of performance values fpλ, fnλ, and p
α
λ , whichever the prognostic algorithm

is.

As mentioned in Section 2, our model mainly focuses on prognostics. Thus, we assume that the

uncertainty in DTD is already known and it is described by a normal distribution, which for the

simulations that follows, is arbitrarily taken to have mean 5 and standard deviation 1, in arbitrary

units. Then, in the simulations, the degradation is detected to reach the detection threshold at

a time Tpr, which is on average 5 time units larger than Td and the variability of this delay is

given by the standard deviation of 1 unit. Finally, with respect to the maintenance policy settings,

we assume h = 1, β = 40 and ∆t = 30 in arbitrary units: larger values of h or smaller values

of β would result in reliability values very close to 1, which do not allow a fair validation of the

proposed modeling framework.
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5.2 Performance estimation

To estimate the values of the performance metrics FPλ, FNλ and P
α
λ , we implement the following

MC procedure:

1. Simulate the crack propagation mechanism to �nd Tf , Td, the N prediction instants at every

∆t time and the corresponding crack lengths. In particular, Tpr is obtained by adding a

sample from N (5, 1) to Td, whereas Tf = RUL∗ at λ = 0. The gathered values of Tf and Td

are also used to derive fTφ and fTd , respectively, at step 3.

2. At every prediction instant tλ, λ = tλ−Tpr
Tf−Tpr

, run the PF algorithm to estimate the current

crack length and the pdf fRλ of the predicted RUL Rλ. On this basis, use Equations 1-3 to

calculate the values of ΦPλ, ΦNλ and Πα
λ using fRλ and RUL∗λ = Tf − tλ. In this respect,

Figure 6, shows the histograms of k∗

N
and h∗

N
over λ as derived from the simulation of 15000

Monte Carlo trials of crack degradation: it can be seen that in almost 90% of the trials,
k∗

N
≥ 0.9 and h∗

N
≥ 0.95. This implies that we can avoid calculating ΦPλ, ΦNλ, and Πα

λ for

all values of λ; rather, we can reduce the range of interest at λ > λ∗, for some appropriate

value of λ∗.
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3. Once steps 1-2 are simulated a large number of times and the corresponding values of ΦPλ,

ΦNλ, and Πα
λ are collected, divide [λ∗, 1) in I intervals of the same length [λi, λi+1), λ0 = λ∗,

λI = 1; I should be small enough that intervals [λi, λi+1) do not contain multiple prediction

instants of the same MC trial. Derive also fTd and fTφ .

4. For each interval [λi, λi+1), compute the average of the values of ΦPλ, ΦNλ, and Πα
λ gathered

at the time instant λ ∈ [λi, λi+1); this provides the estimates fpλ, fnλ, and p
α
λ , which are

step-wise functions over the identi�ed I intervals.

Figures 7 and 8 provide an example of the described procedure for 3 MC trials, in which λ∗ = 0.1.

The degradation paths are simulated over time (Figure 7) and the corresponding values of interest

are collected. Figure 7 also reports for every degradation path the λ values corresponding to the

prediction instants, which depend on the duration of the component life. Then, Figure 8 partitions

the interval [0.1; 1) in intervals of length 0.06, which contain at most one prediction instant of the

same trial. In this respect, a simple rule to select the maximum λ interval length is to select the

maximum number Nm of prediction instants in a single trial; then, the maximum λ interval length

is 1
Nm

.
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Figure 7: Example of degradation evolutions and computation of λ related to prediction instants
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0.1 0.16 0.22 0.28 0.34 0.4 0.46 0.52 0.58 0.64 0.7 0.76 0.82 0.88 0.94

0.15 0.23 0.31 0.38 0.46 0.54 0.62 0.69 0.77 0.85 0.92

0.13 0.25 0.38 0.5 0.63 0.75 0.88

0.18 0.27 0.36 0.45 0.55 0.64 0.73 0.82 0.91

λ

Figure 8: Computation of the performance metric values of Figure 7

Figure 9 shows the results of the procedure detailed above for the case study illustrated in Section

4, starting from λ ≥ λ∗ = 0.45. In particular, two di�erent length values of the [λi, λi+1) intervals

have been considered: 0.05 (Figure 9a) and 0.005 (Figure 9b). In both cases, we checked that every

interval contains at most one prediction instant of the same trial, although for some simulated trial

some intervals do not contain any prediction (see Figure 8). This causes the noisy behavior of the

metrics in Figure 9b, as the narrower the interval [λi, λi+1), the smaller the corresponding number

of gathered values of ΦPλ, ΦNλ and Πα
λ over the Monte Carlo trials, the larger the MC error

a�ecting the averaged values.

From the analysis of Figure 9, we can notice that both the fp and fn values increase over λ, except

for λ ≥ 0.95. This is due to fact that when λ ' 1, RUL∗ = N(1−λ)∆t ' 0; hence, on one side the

chances of having φp = 1 reduces, whereas on the other side there is no possibility to have φn = 0.

This entails that fpλ and fnλ tend to converge to 0 and 1, respectively as λ→ 1. Moreover, fp is

always larger than fn, except when λ ≥ 0.95. This can be easily explained remembering that we

are tracing a percentile of the RUL, which favors the false positive alarms. For the same reason,

pαλ tends to converge to 0 in the last part of the component life cycle: when the component is

approaching its failure time, the RUL estimations become more precise; then, tracking a percentile

instead of the RUL median introduces a bias that impacts on the prediction accuracy (see Figure

2). Notice that this behavior does not contradict the presented model: predictions done at failure

time are not considered, as the component is always assumed to fail at N∆t, which implies that
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the largest possible value of λ = (N−1)
N

< 1.
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Figure 9: Experimental metrics values

5.3 Component unreliability estimation

To estimate the component unreliability based on Equations 4, 5 and 6, the following procedure,

derived from [23], has been implemented:

• Divide the time horizon in J time intervals of length ∆t, [0, t1), [t1, t2), . . . , [tJ−1, tJ ], and

associate a counter to every interval, whose initial value is set to 0.

• Sample δ ∼ fDTD; this way, we can estimate the Kernel in Equation 4, which is conditional

on DTD.

• Compute the �rst addendum of Equation 4 by Monte Carlo, evaluating the integral corre-

sponding to the undetected failure probability: for each failure time tj, we sample Tpr from

U(tj − δ, tj), i.e., a uniform distribution between tj − δ and tj (see forced simulation in [23]).

• Compute the second integral of Equation 4, similarly to the previous one except that Tpr

must be sampled from U(0, tj − δ). Then, k∗, h∗ and N are computed, and the values of the

performance metrics obtained are used to complete Equation 4.

• Estimate k(tj, Failed) of the integral in Equation 5 by applying MC method ([23]).

• Estimate the unreliability at time tj (Equation 6), by summing all the failure contributions

on the right of tj:

u(tj) ' ∆t

j∑
i=1

[k(tj, Failed)] j = 1, . . . , J
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5.4 Estimation of the `on-line' unreliability

The online unreliability is estimated through the MC procedure developed in [1]. Brie�y, the time

horizon is partitioned in time-channels of length ∆t units of time. The crack growth process is

simulated over time together with DTD to compute Td. If Tpr ≥ Tf , the unreliability counters

associated to the channels from Tf to the end of the time window are set to 1; otherwise, the

empirical pdf fRλ is estimated every ∆t units of time by means of the Particle Filtering. Then,

at each prediction time tλ, if the predicted β
th percentile of fRλ is before the next hth inspection

time, then the component is removed from operation, otherwise it continues to work. The trial

simulation continues until either the component fails or is removed from operation: in the former

case, the unreliability counters associated to the channels from Tf to the end of the time window

are set to 1; otherwise they are set to 0. Finally, the online unreliability at every ∆t is estimated

as the average over many MC simulation trials of the accumulated counter values. As mentioned

before, we expect that the o�ine unreliability curve is always above the online one, as we have

built a model which under-estimates the safety bene�t of a PHM system.

5.5 Results

Figure 10 shows the two unreliability curves obtained using the two methods described above.

The bars in Figure 10 represent the 68% two-sided con�dence interval of the MC simulation error,

both in the on-line and o�-line setting. From the analysis of the Figure, it seems fair to say that

the proposed reliability model is accurate, as the two curves are close to each other. Notice that

the di�erence between the two curves increases with time, meaning that there are no prediction

instants at which our model over-estimates the component stopping probability.
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Figure 10: Comparison between `on-line' and `o�-line' unreliabilities

6 Conclusion

In this work, we have presented a novel general framework to compute the reliability of a PHM-

equipped component. The modeling framework proposed applies to safety critical components and

risk-averse contexts (e.g., applications of the nuclear, aerospace, oil and gas industries), where the

main concern is to prevent the component from unexpected failures.

The proposed framework is based on time-variant prognostic metrics of literature (FP , FN and

Pα
λ ) and allows deriving a conservative, analytic model to estimate the failure probability. Appli-

cation to a mechanical component subject to fatigue degradation has shown that the reliability

estimate is close to that obtained from real-time simulation and always under-estimating it.

Further research work is ongoing to investigate the application of the developed reliability model

to other engineering applications and to propose further improvements in the reliability model,

e.g., for relaxing some conservative assumptions or approximations.

In particular, future research work will focus on the extension of the proposed approach to multi-

component systems ([28], [29]). This will require to encode the diagnostic performance metrics

in the proposed reliability model, so as to give due account to the possible system failure paths

corresponding to the di�erent degradation evolutions of its components.
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