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Reliability Centered Maintenance (RCM) is a mature technique for effective maintenance decision making in

complex systems. Although RCM is widely used in industry, there are major limiting factors that prevent its wider

application such as the lack of reliability data at the beginning of the system operating life, the inaccuracy of the

supplier data, the focus of the analysis on the failure modes rather than on the component and the fact that economic

considerations do not enter the RCM process. We propose an approach to address all these issues, based on the

integration of RCM with system Life Cycle Cost (LCC) models. This allows factoring a cost-benefit analysis

into the technical considerations, thus yielding the optimal final maintenance decision. A practical example from

ALSTOM is shown, in which, for confidentiality, the model parameter values have been opportunely modified.
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1. INTRODUCTION
Reliability Centered Maintenance (RCM) Nowlan
and Heap (1978); Rausand (1998); Rausand and
Vatn (2008) was proposed in the 1970’s to effec-
tively manage maintenance in complex systems.
Nowadays, RCM is standardized for the different
industrial sectors IEC 60300–3–11 (2009); SAE
JA1012 (2002); MIL-STD–2173 (1986); NAVAIR
00–25–403 (2005); USACERL TR 99/41 (1999)
and it is supported by the availability of ad-
vanced Computerized Maintenance Management
Systems (CMMSs) Rastegari and Mobin (2016);
Wienker et al. (2016); Carretero et al. (2003), with
many success cases reported Nowlan and Heap
(1978); Moubray (1997).
The main idea of RCM is to concentrate the main-
tenance efforts on the components of the asset

most critical for safety and business, and apply
to them the most effective maintenance approach,
as resulting from the analysis of their reliability
characteristics Rausand (1998).
In spite of the maturity of RCM, still there are
some issues preventing its wider application to
industry. First, data to infer the component reli-
ability behavior are often lacking. For example,
this is the case of the early operating life of a new
technology system or a subsystem provided by a
new supplier: the data gathered from the previous
version may be not straightforwardly applicable
to the new one. Yet, the reliability data provided
by the suppliers can be inaccurate. For instance,
data are often collected in operating conditions
significantly different from those actually expe-
rienced by the system or through laboratory test
campaigns performed in unrealistic ground benign
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environments. Moreover, it is the authors’ experi-
ence in the railway industry that some suppliers
give only a failure rate value to represent the
component reliability behavior. This entails that
they implicitly assume a memoryless exponential
behavior for the component failure time and, thus,
they do not consider the other possible evolutions
of the hazard rate such as the wear-out or infant
mortality phases of the well-known bathtub curve.
Finally, in some cases the estimation of the failure
rate can be even deliberately adjusted to increase
the benefit for the suppliers. For example, in case
the supplier has the ownership of the maintenance
service, it could be convenient for them to de-
clare a failure rate value larger than that really
estimated, because this reduces the risk of paying
penalties whenever the reliability performance are
worsen than that agreed in the contract.
Another limiting factor for a wider RCM applica-
tion is that the selection of the maintenance strat-
egy is guided towards the solution that is the best
from the technical point of view, only. Indeed,
the final maintenance decision heavily depends
also on economic aspects. For this, RCM must
be integrated with Life Cycle Cost (LCC) models
that estimate the costs of operating and main-
taining the component over its lifetime Campbell
and Jardine (2001). This allows factoring a cost-
benefit analysis into the technical considerations,
to yield the optimal final maintenance decision.
Finally, RCM selects the best maintenance strat-
egy for each Failure Mode (FM); nonetheless, the
optimization of the settings of the selected mainte-
nance strategies must consider all the component
FMs.
In this work, we propose a methodology to over-
come all the mentioned RCM limiting factors (i.e.,
lack of reliability data, memoriless assumption,
final decisions not integrating LCC analysis out-
comes), to extend its application to complex sys-
tems at the beginning of their operational life.
The proposed methodology is applied to a prac-
tical example in the railway industry, although it
can be applied also to other industrial sectors. For
confidentiality, this example is slightly modified
with respect to the real one, and the values con-
sidered are for illustration, only.
The paper is organized as follows. Section 2
briefly illustrates the RCM approach. In Section 3,
we describe the knowledge, information and data
typically available at the beginning of the system
operating life. Section 4 proposes a decision
model for a component with hidden and operation
FMs, for which the RCM procedure has selected
scheduled mainteanance. This model is applied to
a condenser motor of a Heating, Ventilation and
Air Conditioning (HVAC) system of train saloon
in Section 5. Section 6 concludes the work.

2. RCM at a glance
Whichever the RCM reference standard is, the
underlying idea of RCM is to first identify the
Maintenance Critical Items (MCI), which impact
most on safety, environment and business. This
allows concentrating the efforts to carry out the
time-costly RCM on the parts of the asset which
are supposed to benefit most from a revision of the
maintenance approach. After that, a Failure Mode
and Effect Analysis (FMEA) is performed to ana-
lyze the Failure Modes (FMs) of these MCI and,
thus, identify those most relevant (often refered to
as dominant FMs), which the maintenance efforts
must be concentrated on.
To find the best maintenance approach for ev-
ery dominant FM, RCM relies on a decision
flowchart, which can be adapted to the specific in-
dustrial needs. We consider the general flowchart
in Figure 1.

start

Safety Operational Hidden

Monitoring CBM Monitoring

Wear WearSC

TestFT

Run to Failure
Re-design
mandatory

Re-design

No No No

Yes

Yes

Yes

Yes Yes

No

Yes

No

Yes

No

Yes

No

No

Yes

No

Fig. 1.: RCM Decision Tree

The first question is about the effect of the
analyzed FM, which can be classified as:

• Safety (S), if the FMEA indicates that
the FM has non-negligible direct conse-
quences on safety or environment.

• Operational (O); every FM entailing rel-
evant impacts on system reliability or
availability undergoes a detailed analysis
of its maintenance strategy.

• Hidden (H); contrarily to the ’Evident”
failures, the consequences of hidden FMs
become evident only when other com-
bined failures occur. These FMs are usu-
ally linked to items that perform func-
tions related to security, protection, re-
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serve (redundancy) and control, which
need the additional failure of those item
that are being secured, protected, re-
dounded and controlled to become evi-
dent. Although not directly affecting the
operability of the system, Hidden FMs
can increase the risk of operational FMs.

If none of these three questions is affirmatively
answered, then the FM can be managed through
the run-to-failure approach. Otherwise, whichever
the decision tree branch is (i.e., S, O or H), the
second question is about the possibility of moni-
toring any physical variable indicative of the FM
degradation and defining a threshold value for it,
at which performing maintenance can avoid the
component failure IEC 60300–3–11 (2009); SAE
JA1012 (2002). In case of affirmative answer,
Condition-Based Maintenance (CBM, e.g., Zio
and Compare (2013)) is considered technically
feasible; otherwise, the decision flowchart pro-
ceeds with other questions about the reliability
characteristics of the component to check the ap-
plicability of scheduled maintenance. The ratio-
nale of this question is that if failures are random
(i.e., obeying the exponential distribution), then
preventive maintenance approaches are useless.
In case of hidden FMs, functional checks can be
performed: the larger their frequency, the larger
the component availability Zio (2007). If these
preventive approaches are not applicable either,
the component is inevitably run to failure and
taken care of by corrective maintenance.
In this work, we disregard the first branch of
the tree, i.e., safety, and develop a LCC model
for components with both operational and hidden
FMs. The LCC analysis goal is, then, to select the
optimal interval times for each scheduled activity
and for the functional tests.

3. Knowledge, Information and Data
available for RCM

At the beginning of the operating life of a com-
plex system, reliability data of its subsystems may
be lacking and the only pieces of information
available are those from the supplier, who usually
provides the FMEA together with the values of
the component failure rates and indications of the
intervals for the scheduled maintenance actions.
To formalize this, we assume that every compo-
nent is given a constant failure rate λs(t) = λs

by the supplier; the component is affected by
M different FMs, which are assumed statistically
independent on each other. To link the component
failure rate, λs, to the frequency of its M FMs we
rely on the following model:

λs
m = λs · pm (1)

where pm is the portion of occurrence of failure
mode m ∈ {1, . . . ,M} with respect to the total

number of component failures: λs =
∑M

m=1 λ
s
m.

This modeling approach is justified by the theory
of Poisson processes Papoulis and Pillai (2002).
On the other side, the assumption of constant
failure rate does not allow identifying the oppor-
tunities to change the maintenance strategy or the
scheduled maintenance times, which is at the heart
of the RCM process. To do this, we must consider
the possible wear-out and infant mortality behav-
iors that the component could experience when
operated. These behaviors can be described by
the Weibull distribution, which is often used in
industrial practice due to its flexibility: it allows
modeling hazard functions both increasing and
decreasing over time, with different speeds Lai
and Xie (2006).
The hazard rate of the m-th FM of the component
obeying a Weibull distribution reads:

λwb
m (t) =

βm

αm

(
t

αm

)βm−1

(2)

where αm and βm are the scale and shape pareme-
ters, repsectively, whetreas t is the time from
component installation.
To work with a Weibull distribution coherent with
the information available about the constant fail-
ure rate of each FM, we assume that it has been
estimated as the average number of FMs expe-
rienced within the scheduled maintenance time
interval τ sm suggested by the supplier Zio (2007).
This average number must be the same for the two
distributions:∫ τs

m

0

λwb
m (t)dt =

(
τ sm
αm

)βm

= λs
m · τ sm (3)

Equation 3 encodes two unknown parameters αm
and βm, which are linked by the following rela-
tion:

αm =
(τ sm)1−1/βm

(λs
m)1/βm

(4)

We indicate by β = [β1, . . . , βM ] ∈ B the
vector containing the shape parameters of all FMs
affecting the component. Given the lack of reli-
ability data, we assume that the shape parameter,
βm, ranges in interval [βm, βm], which depends

on the specific application, m ∈ {1, . . . ,M}:
βm < 1 is suitable for components with expected

infantile or early-life failures, whereas βm > 1
indicates that component ware-out is expected:
the larger its value, the faster the degradation. This
way, we consider the uncertainty on the possible
failure behaviors of the FMs, including that of a
fast acceleration of ware-out after τm, if we set
βm >> 1.
To consider the possible uncertainty in the failure
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rate values provided by the suppliers, we assume
that the actual failure frequency λm ∈ [λm, λm],

where λm = l · λs
m and λm = g · λs

m, 0 < l < g.
The DM can set l > 1 if the failure rate value
provided by the supplier is considered underesti-
mated, whereas l < 1 corresponds to the situation
where the DM feels that the supplier estimation is
conservative.
We indicate by λ = [λ1, . . . , λM ] the vector
containing the failure rates of all FMs affecting
the component.

4. Decision model for components
undergoing scheduled actions and
functional checks

Assume that the FMECA of a component has
identified k < M hidden FMs and M − k opera-
tional FMs, for which the RCM decision tree has
led to select the scheduled maintenance approach.
Without loss of generality, we indicate the hidden
FMs as μ = 1, ..., k, whereas the operational FMs
are m = k + 1, ...,M .
Upon the occurrence of a hidden FM μ ∈
{1, ..., k}, the failure rate of the m-th operational
FM increases by a factor χm,μ > 1, m = k +
1, ...,M .
If we indicate by Xμ the binary variable such that
Xμ = 1 when FM μ has occurred and Xμ = 0,
otherwise, then, the effects of hidden FMs on
operational FM m ∈ {μ + 1, ...,M} can be
considered through one of the following additive
or multiplicative, respectively, updating models:

λm ←
(
1 +

k∑
μ=1

(χm,μ − 1) ·Xμ

)
· λm (5)

λm ←
k∏

μ=1

(1 + (χm,μ − 1) ·Xμ) · λm (6)

To prevent FMs m = μ+1, ...,M , the component
undergoes scheduled actions. These always leave
the component in As Good As New (AGAN) con-
ditions.
Let τ = [τμ+1, . . . , τM ] ∈ T be the vector of the
corresponding maintenance periods. The number
of scheduled maintenance actions for FM m =
μ+1, ...,M performed over the time horizon Ω is

Nm ≤
⌊

Ω
τm

⌋
. This number is a random variable,

which depends on the component failure behavior.
If we indicate by cpm the fixed cost of a single
preventive maintenance task m = μ + 1, ...,M ,
the total fixed cost for scheduled maintenance over
the time horizon reads:

Cp
m = Nm · cpm (7)

The average total time to perform scheduled main-
tenance action for preventing FM m = μ +
1, ...,M over Ω reads:

T p
m = Nm · TTRp

m (8)

where TTRp
m is the average time to perform the

single scheduled action. Possible synergies can be
easily encoded in this scheme.
To detect hidden FMs, we assume that the compo-
nent undergoes a single test that can detect all its
hidden FMs. This test is performed every π units
of time; then, the related total fixed cost Cπ and
total time to perform tests Tπ read:

Cπ = Nπ · cπ Tπ = Nπ · TTRπ (9)

where Nπ is the random number of tests per-
formed within time horizon Ω, whereas cπ is the
costs of test performed and TTRπ is the time to
perform the single test.
The total cost for corrective maintenance over the
system time horizon reads:

Cf = NΩ · cf (10)

where cf is the expected cost of the single cor-
rective action, whichever the FM, whereas NΩ is
the number of failures of the component within
the operating time horizon Ω. This is a random
variable depending on the Weibull distributions of
the component FMs, test interval π and vector τ :
larger intervals between tests delay the detection
of hidden FMs and, thus, increase the time win-
dow in which the failure rates of the operational
FMs are larger than in nominal conditions. Sim-
ilarly, larger scheduled intervals τ entail longer
ware out. Thus, increments in π and τ lead to
larger expected numbers of failures NΩ. On the
other hand, larger values of π and of the values in
τ allow decreasing the expected numbers Nπ and
Nm of test and preventive actions, respectively, to
be performed over the train operating time hori-
zon.
We indicate by TTRf the expected time to per-
form a single corrective action; then, the total time
spent within time horizon Ω to perform corrective
actions reads:

T f = NΩ · TTRf (11)

The LCC of the component reads:

LCC(τ , π, β, λ) = Cf + T f ·Hf

+

M∑
m=μ+1

(Cp
m + T p

m ·Hp
m) + (Cπ + Tπ ·Hπ)

(12)

where Hπ is the hourly cost of test, whereas Hf

and Hp
m are the hourly cost of corrective and

scheduled maintenance on operational FM m =
μ + 1, ...,M , respectively. These depend on the
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number of workers required to perform the action
and their skills.
Notice that the hourly cost Hp

m can also be set to
zero, as for example in the case where there is a
diagnostic system.
Notice also that Equation 12 also encodes the
costs related to the maintenance actions performed
upon a negative test: these are corrective mainte-
nance actions, whose costs are accounted by the
first two addends.
Equation 12 allows finding the optimal values of τ
and π yielding the minimum LCC over the whole
life Ω of the system. For this, we append π to τ
in vector d = [τ , π] and propose the following
procedure:

• Consider a grid of values of d;
• For every value of τ and π, consider a

grid of values of β and λ and calculate
the corresponding α (Equation 4);

• Apply Monte Carlo simulation to esti-
mate LCC(d,β,λ)

• Use the pairwise dominance criteria Salo
and Hämäläinen (1995) to eliminate the
maintenance times d yielding dominated
LCC values: dx is pairwise dominated
by dy , dx ≺p dy if ∀β ∈ B ∀λ ∈ L:

LCC(dx,β,λ) > LCC(dy,β,λ)
(13)

The pairwise dominance is a sufficient
condition fo the absolute dominance Salo
and Hämäläinen (1995): dx is absolutely
dominated by dy , dx ≺ dy if:

min
β,λ

LCC(dx,β,λ) > max
β,λ

LCC(dy,β,λ)

(14)
If the portfolio of non dominated solutions con-
tains more than one element, the decision on the
optimal time to perform maintenance is based on
the DM preferences. For illustration, a risk averse
DM who wants to select the optimal policy that
minimizes the LCC of the worst combination of
parameters (i.e., maximin regret policy Salo and
Hämäläinen (1995)) operates as follows:

• Conservatively assume that the total
LCC following scheduled maintenance
policy and test performed at times τ
and π is that obtained under the combi-
nation of parameters yielding the max-
imum expected cost: LCC(d) =
maxβ,λ LCC(d,β,λ)

• The optimal scheduled maintenance and
test times τ ∗ and π∗ are those minimiz-
ing the LCC, i.e., d∗ = [τ ∗, π∗] =
argmind LCC(d).

Finally notice that k = M is typical of auxiliary
components (e.g., sensors) which allow detecting

and/or preventing failure of other components.
Thus, these components need to be considered
together with those which their failure mitigation
applies to.

5. Example of application
Consider the condenser motor of a Heating Ven-
tilation and Air Conditioning (HVAC) system for
train saloon. There are M = 3 FMs, including
μ = 1 hidden FM:

• FM1: bearings degradation. This hid-
den FM causes over-vibration, which in-
creases the frequency of the other two
FMs. We assume β1 ∈ [1.1, 1.5].
The RCM suggets a periodical functional
check.

• FM2: Coil in short-circuit. This leads
to the HVAC out of service. A corrective
approach has been indicated by RCM for
this FM. We set χ2,1 = 2.5 and β2 ∈
[1.1, 1.5].

• FM3: internal mechanical breakage.
This entails the HVAC out of service.
The RCM analysis has shown that a
scheduled maintenance (component re-
placement or overhaul) is doable to pre-
vent this FM. We set χ3,1 = 2.5 and
β3 ∈ [1.5, 3.5].

The portions of occurrence of each of them are
p1 = 0.25, p2 = 0.30 and p3 = 0.45. In Table
1, the LCC parameters are summarized. These are
derived from the values provided by the supplier,
which, for confidentility, have been opportunely
re-scaled.

To select the scheduled maintenance frequency
yielding the minimum LCC, we apply the ap-
proach described in Section 4, which yields d∗ =
[1, 31, 16].
To justify this result, in Figure 2 we fix π = 1 (i.e.,
functional test performed every year), τ2 = 31,
i.e., corrective maintenance, and show the total
maintenance costs as a function of the time inter-
val τ3 between consecutive scheduled actions on
FM3. We consider l = 1 and g = 2, whereby
λm ∈ [λm = λs · pm, λm = 2 · λs · pm]. We
show the results for the two extreme values of the
interval (i.e., λs and 2 · λs), reported in different
colors and markers.
Notice that τ3 = 10 years is the maintenance
period proposed by the item supplier, whereas
τ3 = 31 years corresponds to performing correc-
tive actions only.
The two curves with the same color represent the
upper (continuous line) and lower (dotted line)
bounds of the maintenance costs for all possible
combinations of Weibull parameters α,β. From
the analysis of Figure 2, we can see that:
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Table 1.: LCC parameters

λs [h-1] cf [e] TTRf [h] cp3 [e] TTRp
3 [h] Hf = Hp

3 = Hπ [e/h] cπ [e] TTRπ [h] Ω [years] functioning h/y
2.6 · 10−6 390 2.3 75 3 70 0 0 31 7300

• For all values of λ, the expected main-
tenance cost strongly increases with the
number of performed scheduled tasks:
τ3 = 10 years entails a total of 3 sched-
uled actions, resulting in the most ex-
pensive maintenance strategy. Similarly,
τ3 ∈ [11, 15] years entails 2 scheduled
actions and, finally, τ3 ∈ [16, 30] years
entails a single action.

• For all values of λ, the maintenance cost
monotonically increases over the time
intervals τ3 ∈ [11, 15] years (2 sched-
uled tasks) and τ3 ∈ [16, 30] years (one
scheduled tasks).

10 15 20 25 30 35
0

500

1000

1500

s x  1
s x  2

Fig. 2.: Upper and lower bounds of total main-
tenance cost vs scheduled maintenance time of
FM3 for different values of λs

If we apply the maximin regret policy Salo and
Hämäläinen (1995), we have to refer to the upper
curve, which reaches the smallest cost value at
τ3=16 years.
Figure 3 represents the expected number of fail-
ures NΩ over the values of τ3 for λ = λs, 2λs.
It can be seen that corrective maintenance policy
entails NΩ up to three times larger than that corre-
sponding to the policy suggested by the supplier.
For τ3 = 16 years, in the worst case (λ = 2λs) the
number of expected failures increases up to 25%.

6. CONCLUSIONS AND FURTHER
DEVELOPMENTS

We have shown an approach to integrate RCM
with system Life Cycle Cost (LCC) models,
which allows factoring a cost-benefit analysis into
the technical considerations to yield the optimal
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Fig. 3.: Maximum expected number of failures vs
scheduled maintenance time of FM3 for different
values of λs

final maintenance decision. The proposed ap-
proach extends the applicability of RCM in that it
overcomes some main limitations such as the lack
of reliability data at the beginning of the system
operating life, the inaccuracy of the supplier data,
the focus of the analysis on the failure modes
rather than on the component.
The models proposed can be further refined de-
pending on the availability of additional informa-
tion, either gathered from expert-based knowledge
or from data.
For instance, to decrease the epistemic uncertainty
in the values of the parameters αm and βm, i.e.,
to overcome the assumption that all βm distribu-
tions are uniform in their domain, more realistic
distributions π(βm) of βm can be inferred. This
allows distinguishing between failure modes lead-
ing to early failures (i.e., π(βm) has larger mass
on values of βm < 1) from those due to aging
effects (i.e., π(βm) has larger mass on values
of βm > 1); depending on the total amount of
information provided, a distribution can be used to
model also the uncertainty in the parameters αm,
thus getting rid of some of the assumptions made
in the FMECA.
Furthemore, the derived distributions of αm and
βm can be embedded in a Bayesian framework as
prior distributions for future analyses: additional
collected data can be used to derive the posterior
distributions. The procedure is iterated every time
new data are collected, thus allowing more accu-
rate LCC estimations.
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