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Pipe drift is among the most relevant quality factors of pipes for deep water applications. This is estimated through
empirical models encoding geometrical parameters. In a previous work, we relied on Gaussian fields to map these
parameters onto the pipe drift conformance probability. The field kernel was estimated from a set of measurements
gathered from pipes of the same lot, produced at the same mill. However, in practice it is very difficult to find this
homogeneous dataset. The objective of this paper is to extend the previously developed framework to estimate the
drift based on the geometrical data relevant to a single pipe, only. For this, we consider known analytical kernels
and infer their parameters from the single pipe measurements. Then, we estimate the actual error on the drift
conformance probability estimations, considering the best fitting kernel. This error turns out to be negligible.
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1. Introduction

The drift of a pipe is a measure of the roundness of
its inside wall. When the drift is out of specifica-
tion, tools, pumps, smaller pipes and other items
are no longer guaranteed to pass through the pipe.
In Oil&Gas deep water applications, this leads to
major consequences on the well operability and,
thus, on its economic performances. Given the rel-
evance of drift, pipes not meeting the acceptance
requirement are discarded. This improves the
quality of the purchased pipes, but strongly affects
their production costs, in an Oil&Gas industry
context where currently there is a urgent need for
cost reduction Crooks (2016); Hovem (2019).

Pipe drift can be estimated through empirical
models encoding geometrical parameters such as
pipe diameters and thickness, which are accu-
rately measured at discrete points on every pro-
duced pipe. This measurement-based approach,
however, ensures that the drift requirement is met

over the entire pipe, only if we assume that the
geometrical parameters are not diverging between
two successive measurement points. This assump-
tion cannot be straightforwardly accepted.

To overcome this issue, a novel framework is pro-
posed in Pinciroli et al. (2019) to estimate the drift
conformance probability (i.e., probability of hav-
ing drift values meeting the requirements over the
entire pipe ISO/IEC-GUIDE:98-4 (2012)). This
is based on the Gaussian field theory, where the
Gaussian field kernel is inferred from a homo-
geneous dataset of pipe geometrical parameters,
measured from pipes of the same type and pro-
duced at the same mill. The drift conformance
probability of each pipe is a posteriori estimated
through a Bayesian updating of the field, based
on the gathered evidence of the measurements.
In particular, the framework proposed in Pinciroli
et al. (2019) adopts a numerical approach for
kernel estimation, which infers from the available
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dataset the entries of the covariance matrix among
the measumerent points, with no assumption on
the kernel shape.

The approach proposed in Pinciroli et al. (2019)
is limiting in practice, as it is very difficult to
find homogeneous datasets to estimate the kernel.
In fact, Oil&Gas mills produce pipes of different
families, each requiring significant changes in the
production settings that modify the kernel shapes.
In this work, we extend the framework proposed
in Pinciroli et al. (2019) to estimate the drift con-
formance probability of a single pipe, based on its
measured parameters, only. In this new setting,
we do not a priori know the analytical formula
of the kernel; even if we did, the estimation of
its parameters would rely on poor data only (i.e.,
those of the single pipe). Moreover, the numerical
approach adopted in Pinciroli et al. (2019) for
kernel estimation is not applicable, as it would
use only one sample to estimate the covariance
between pipe measurement points at the largest
distance, only two values to estimate the covari-
ance between measurement points at the largest
but one distance, and so on.

To takle this issue, we investigate the estimation
error in the drift conformance probability when
we apply known analytical kernels and infer their
parameters from a single pipe.

The remainder of this paper is organized as fol-
lows. In Section 2, the pipe drift model is pre-
sented. In Section 3, the developed methodology
is shown. Section 4 reports the results obtained
by applying the proposed methodology to a case
study derived from a dataset of real pipe mea-
surements. However, to protect the intellectual
property, the original data have been all modified
by applying some corrective factors. Section 5
concludes the work.

2. Pipe drift

Consider a pipe of length L mm. We assume
that the available measuring sensors acquire the
following geometrical parameters at pipe sections
X = {x1,-xd} € Q = [0,L] C R, equally
spaced at a distance A = L/d mm:

o Average wall thickness, W,,;
e Maximum wall thickness, Wt 445
e Average outer diameter, Od,;

These pipe features allow estimating the drift by
means of a mathematichal model derived from
API (1994); ISO/TR-10400 (2007). For confiden-
tiality, this is not explicitly reported and, thus, it is
generically defined as:

Dr =
f (]EZDT [Wtau} 7]ElDr [thax} 7]ElDT [Oda'u] 7E1D)7')

where

e €p, is a vector of random variables rep-
resenting the epistemic uncertainties in
the drift model; these variables depend
on the pipe manufacuring process and
have been estimated based on a large
dataset of produced pipes.

o iy, [Odyy], Eip, [Wtao)
and E;, [Wt,,q.] represent the average
values over a critical length [p, mm of
the average outer diameter, average wall
tickness and maximum wall tickness, re-
spectively. In particular, the estimations
of these values at pipe section Y; con-
sider its first NP" = [Ip,/A] subse-
quent sections, ¢ = 1,...,Np, Np =
d — NP™ 4+ 1, where [o] indicates the
ceiling value of its argument.

Notice that in Eq. (1) it is assumed that the
smaller the value of Dr, the worsen is the pipe
quality. Then, to evaluate the pipe drift con-
formance probability, we estimate the probability
that Dr does not go below the threshold require-
ment T’ in any point of the pipe.

When we get the measurements of Wt,,, Wtnax
and Od,, at points x, we first rely on Eq. (1)
to propagate the uncertain quantities €, onto the
drift values, through the Monte Carlo method.
Namely, at every measurement location y; €
Xp = {x1,., XNp}, we sample Ny >> 1
(e.g., Ny = 107) values from the distribution
of ep,. These samples enter the drift model to
get the corresponding N, values of Dr, which
determine the distribution of the drift assigned to
the pipe section. Then, any quantile p €]0, 1] of
this distribution can be considered, defining the
random variable X,()x;). This can be framed as
the drift value at pipe section x; if the pipe were
in the p-th portion of produced pipes leading to the
worst values of €p,..

To simplify the notation, we indicate by X, ; the
variable X,(x;), ¢ = 1,...,Np. The vector of
random variables X,;, i = 1,...,N, p €]0,1]
and the corresponding values derived from the
measurements of the geometrical features of the
pipe are indicated by, respectively:

Xy =[Xp1,.os Xp.Np ] 2)

Xp = [Tp,1, s Tp,Np ) 3)

It is tempting to assume that if all the points of X,
are above T, then the conformance probability
of the pipe is at least p. However, this definition
disregard the drift in points belonging to Q \ xp
and, thus, it provides over-estimations II of the ac-
tual conformance probability II, especially when
the distance between points in x is large. In
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formulas:

II<II=1-— min {p\ min X, ; >TD}
p€]0,1] i€{l,...,Np}

“)

Then, we need to estimate the probability that the

drift goes below threshold 7 over the entire pipe.

3. Methodology

To infer the behavior of the drift in any point x €
2, we assume that measurements x, belong to
a realization of a wide-sense stationary Gaussian
random field f,, i.e. X, = f,(xp):

o E[f,(x)] is constant for any x € 2. The
constant mean is indicated by E[f, (x)] =
tp, VX € Q, p €]0,1] and is estimated
as the mean of the pipe drift over all
sections, i.e.,

Np

Z] 1Tp,j

pp ~ ==
Np

e The covariance function is invariant to
translations, i.e., it depends on 7 = x —
1), only Rasmussen and Williams (2018):
100¥) = Elf(00) — mp)(B(¥) —
pp)] = (7). x; ¥ € Q.

Given that we do not know the kernel of the
single pipe, we assume that it belongs to a fam-
ily of kernels described by few hyper-parameters
(e.g., Squared Exponential (SE), Matérn, Rational
Quadratic, etc. Rasmussen and Williams (2018);
Duvenaud et al. (2013)), covering a wide set of
possible shapes, which are estimated through the
following procedure.
Consider a set K, = {yp.1,...,7p,k } of candi-
date kernels, where 7, 1 (7) = v k(7;0p,1). The
hyper-parameters 8,, ,, of each kernel v, 1,k €
1,...,K}, are estimated through Maximum
Likelihood Estimation (MLE) on the available
measurements. The likelihood reads as in Eq.
6, where Mxp € RMp is the vector contain-
ing Np times the mean value p, and Kx, €

RN x RNP is the matrix whose (4, j) entry reads
Kx,(1,7;0pk) = k(T = |xi — Xjl;0p.k)-
i,j € {1,..,Np}. detKx, is the determinant of
Kx,, whereas le is its inverse matrix.

For each kernel v, 3, € KC, we find:

&)

02" = argmax L(6,,,1,) (7)

p.k

Then, we select from the set of candidates the
kernel ~, (7; GM LEY with the smallest Akaike In-
formation Crlterlon (AIC Akaike (1974)):

AIC, ) = =2 -1og L(O)Y7) + 2 |05 7| (8)

where |9M LE | is the number of hyper-parameters

of the cons1dered kernel v, 1.

Of course, other performance metrics such as the
Bayesian Information Criterion (BIC) can be con-
sidered (Stone (1979)); our choice is justified by
the fact that we are not sure that the proper kernel
is among the set of the considered ones and, thus,
the AIC metric is more suitable than BIC.

We partition the pipe through a strict grid

ép ={d1,...,¢n,} CQ )

of Nz points such that x, N ¢, = 0 and
we characterize the uncertainty in the pipe drift
with the random vector Z, = f,(¢p) =
[Zpi,---sZpnNy,|. This can be done through Eq.
10, where K is the matrix whose (4,7) entry
encodes the kernel v, evaluated at x; — ¢, i.e.,
K% .z, li; =7, (Xi — ¢;). On this basis, we can
estimate the probability that all points in Z,, are
above the drift acceptability threshold 7'p:

Prn,p=P < min

Zpi > T, 11
ic{l,..Nz} D"~ D) an

This value can be interpreted as the probability
that the drif of the pipe is acceptable, provided that
the manufacturing process for the pipe (encoded
in € p,-) is not worsen than that of the 1 — p portion
of produced pipes. Certainly, for this sentence
to be rigorous, we should convert the considered
point-wise approach (Eqgs. 9-11)) to a continu-
ous approach. However, according to Baker and
Faber (2007), no methods exist for computing this
excursion probability conditional on gathered ob-
servations Adler (1981, 2000); Adler and Taylor
(2007).

Notice also that an alternative approach is to con-
sider all the kernels in /Cp, rather than only 'y; ,and
take as reliability value the smallest obtained with
all kernels. This, however, makes the estimatione
very conservative, as kernels with large AIC value
are also considered.

Finally, to set Nz we can proceed through trial
and error, by increasing its value up to when
changes in the estimations of Py, , are negligi-
ble.

4. Case study

The available dataset is composed of the measure-
ments of minimum, average and maximum values
of Wt and Od along the length of Np = 169
similar pipes. For confidentiality, length L is not
disclosed. The measurements are collected every
A mm, leading to d = 125, NP" = 14 and
Np=d—NPr+1=111.

Notice that to protect the intellectual property, the
original data have been all modified by applying
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1 _
L(B,x) = fx, (x,) = e300 Mx )T (00,007 Gy Mo) (6
\/ (27)Nx detKx (0,.%)
Zp| Xy pp, vy ~ N(Kz, Kk, (X, — Mx, ). K7 — K7 x Kx, Kx, z,) (10)

some corrective factors and the value of the criti-
cal length [, is not reported.

Now, we evaluate the reliability of the single pipes
using the methodology reported in Section 3, set-
ting p = 0.05, Nz = 2000 and assuming that
the decision maker will not discard the pipes if
Pn,» = P2000,0.05 >1—1075.

Our candidate kernels are (Rasmussen and
Williams (2018)):

e Matérn 1.5 kernel 7, 1(750,,1) =
. (1+ Vf) S

where 0,1 = [I, C], I is the length scale
parameter and C'is the noise level param-
eter.

e Matérn 0.5 kernel v, 2 (750 2) =

C-e”

where 0, o = [l,C], where [ and C' are
the parameters described above.
e Periodic times Matérn 1.5

’Yp,B(T; 01),3) =

,2<Si"(%(”)>2
e “Yp1(l,C)

where 6,3 = [P, \,[,C], and P is the
period, A is the length scale of the peri-
odic kernel, [ is the length scale parame-
ter and C' is the noise level parameter.

e Periodic times Matérn 0.5

Vp,a(T56p,4) =

HECR))
A
e .21, C)

where 0, 4 = [P, A, 1, C], and the param-
eters are the same described above.

e Periodic times Matérn 1.5 + Periodic
times Matérn 0.5 y,, 5(7; 6, 5) =

Yp,3(P1, A1, 11, C1)+p.a(P2, A2, Iz, Ca)
where

91),5 = [Pl,)\1,l17017p2,)\2712702},
and the parameters are the same de-
scribed above.

T
2

e RBF "Ypﬁﬁ(T; Bp,g) =

where 6, ¢ = [I, C], [ is the length scale
parameter and C'is the noise level param-
eter.

e White v, 7(7; 6, 7) = 0, which denotes
that there is no correlation between con-
secutive samples.

As reported in Rasmussen and Williams (2018),
all the considered kernels are stationary, as they
are sums and products of stationary kernels.
Notice that kernels with non differentiable spectra
such as the Matérn 0.5 entail that there are discon-
tinuities in the derivatives of the drift: when there
is a large correlation between neighbor sections,
the drift in points in €2 \ x , may exhibit a larger
variability with respect to smoother kernels Ras-
mussen and Williams (2018).
In Table 1, we report, for each of the candidate
kernels 7y, € K, (first row), the portion of the
Nr available pipes for which it has the smallest
AIC value; that is, column k reports the portion
of times 7,1 = 7, K € {1,...,7}. We can
see that approximately 50% of times, the mixture
of the two periodic kernels has the smallest AIC
value. Moreover, 79% of the times a kernel with
a periodic component is selected. This is due to
the presence of a periodic geometry in the pipes.
Finally, the Matérn 0.5, RBF and White kernels
never have the smallest AIC.

Notice that the grid sections Z, are uniformly

Table 1.: Percentage of pipes which have as kernel
with smallest AIC kernel 7y, . k € {1,...,7}.

Vp,1 Vp,2 Vp,3 Vp.,4 Vp,5 Vp,6 Vp,7
0.29 0 0.11 0.11 0.49 0 0

distributed along the pipe length. However, differ-
ent approaches can be used to estimate the value
of Py, , for the considered pipe (e.g., Chevalier
et al. (2014); Azzimonti et al. (2016)). For in-
stance, increasing the number of points close to
sections where X,,_.05 is small is expected to
provide more accurate estimations of the down-
crossing probability. Further research work will
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tackle this issue.

Figure 1 reports the drift in all sections of the
pipes; we have highlighted with different markers
the pipes:

e which do not cross the threshold 15 in
any of the points belonging to x and
have P2000’0‘05 >1—1075.

e which either cross the threshold T in
any of the points belonging to xp or
do not cross the threshold but have
P2000,0.05 < 1 — 1075, These are reo-
ported in Figure 2.

From the analysis of the Figures, we can see that
there are 4 pipes out of 169 which do not satisfy
the requirements on drift (Figure 2). Among
these, two pipes have a drift undergoing threshold
T at some measurements sections, whereas the
other two have a probability of down-crossing the
threshold larger than —107°, even if the drift is
acceptable at points in Section x . Notice that
these two pipes are the closest to the threshold T,
especially at x , close to 100.

In Figure 3, we report the trajectories sampled

60
Space [m]

Fig. 1.: Drift vs sections in x, for all the pipes.
The pipes with P2ggo,0.05 = 1 are indicated with
marker +, whereas the other pipes by marker [J.
The horizontal line represents threshold 7.

45.0 N\

/ \
\ /
4.0
435 )J\«(\

[ 20 0 80 100
Space [m]

Fig. 2.: Drift of the pipes with P2ggo,0.05 < 1

from (Eq. 10) with the kernel ~,, for one of these

two pipes. From this, we can see that a few
trajectories cross the threshold 7.

99 100 101 102
Space [m]

Fig. 3.: Sample trajectories: zoom on the threhold.

4.1. Sensitivity analysis

To evaluate the robustness of the proposed frame-
work with respect to the set of kernels KCp, we
perform a sensitivity analysis by evaluating some
accuracy performance metrics on the predictions
obtained using different kernels on the same train-
ing and test data.

Namely, we consider (Rasmussen and Williams
(2018)):

e a grid xp of Np = 99 equally spaced
points in [1, 100].

e AsetS of S| =
nels:

— Radial Basis
(Iength scale=3)

— Matérn 2.5 (length scale=7.0) times
Periodic (I = 2, P = 20)

— Rational Quadratic (length scale=2,
a=0.1)

— Matérn 1.5 (Iength scale=5)

— Matérn 2.5 (length scale=10)

— White Kernel (i.e., the points of
the fields are independent on each
other)

— Matérn 0.5 (Iength scale=8)

e The set K, of the candidate kernels con-
sidered in the previous Section.

7 known ’target’ ker-

Function (RBF)

For each kernel ks in S, we sample W = 40
different realizations of f(x ). Then, for each
realization w € {1,..., W}, we perform 3—fold
cross validation and fit the kernels belonging to set

Kp:

(1) We randomly divide (xp,f(xp)) into three
disjoint and mutually exhaustive sets of the
same dimension, (x5, f(xhH),

(XD F(XD))s (xb: F(XD))-
(2) At each of the three cross-validation rounds

and for each kl in /C,:
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(a) we estimate the Oﬁ% B parameters from the
data of two of these sets (i.e, the train-
ing set of the considered cross-validation
round) and compute the corresponding
AIC.

(b) We evaluate the other performance metrics
on the validation set.

For each combination of training and test kernel,
we consider the average across all different re-
alizations and cross-validation sets (i.e., W - 3
different values) of:

e the binary indicator whether kernel £l yields
the smallest AIC (i.e., it is the optimal one
according to the kernel selection strategy re-
ported in Section 3) among all candidates in
L.

e The ’precision’ metric, which denotes the
portion of points in the validation set where
f(xp) belongs to the 95% confidence inter-
val by the considered kernel (the confidence
interval is computed through Equation 10 and
recalling that the normal distribution N (p, o)
has roughly 95% of its mass in [u —2- o, 1 +
2 - g]). Ideally, this value should be close to
95%.

e The 'mean bandwidth’ metric, which denotes
the average length of the confidence interval
over all validation set points (the length of
the confidence interval for the single point is
4 - o). The smaller its value, the better the
estimation, because there is less uncertainty
in the prediction.

Table 2 reports for each ’target’ kernel ks € S
(rows) the portion of times kernel kI € I, has
the largest AIC value among all the candidates.
Tables 3- 4 report for each combination of target
kernel kl € KC,, (rows) and training kernel ks € S
the average value of the metrics "precision’ and
’mean bandwidth’, respectively.

From the Tables, we can see that on the one hand
with respect to the periodic ’target’ kernel (i.e.,
Matérn 2.5 (length scale=7.0) times Periodic (I =
2, P = 20)), the non-periodic ’candidate’ kernels
never yield the smallest AIC value among all those
belonging to K, (Table 2, row 1). The fact that
periodic ’candidate’ kernels fit the periodic ’tar-
get’ kernels better than the others is in accordance
with the ’precision’ value (Table 3, row 1), which
is further away from the expected value of 0.95
with the non-periodic kernels (i.e., above 0.99 or
below 0.9).

Furthermore, the 'mean bandwidth’ metrics of the
periodic training kernels is less than half of the
corresponding values of the other training kernels
(Tables 4, row 1).

Apart from the Matérn 2.5 kernel, the periodic
training kernels have the smallest AIC value in
non-periodic target kernels (Table 2, rows 2-7) in

less than 20% of cases. Nonetheless, the values
of the performance metrics are not dramatically
different from those of the other kernels: even if
the precision is different from 0.95 with respct
to some of the non-periodic kernels, the 'mean
bandwidth’ of the periodic kernels is among the
best of all kI € K,. This is due to the fact
that periodic and aperiodic kernels get closer as
P — oc.

The problem with the periodic kernels tuned on
non-periodic processes lies in that the larger num-
ber of useless parameters to set yields a more dif-
ficult parameter optimization. These observations
lead to conclude that in the case study considered,
the large frequency at which periodic kernels as-
sume the largest AIC among all candidate values
entails a non-negligible periodic behavior in the
drift value of the available setof pipes.

Moreover, it is likely that the smallest AIC is taken
on by a training kernel of the same type as the
target kernel: 0.97 of the times the training RBF
kernel has the smallest AIC for the target RBF
kernel; similarly, 0.83 of the times the training
Matérn 1.5 kernel has the smallest AIC for the
target Matérn 1.5 kernel and 0.87 of the times the
training Matérn 0.5 kernel has the smallest AIC
for the target Matérn 0.5 kernel, Table 2). This
confirms that the AIC value is a good criterion to
select the optimal kernel: even if the 'mean band-
width’ of the candidate kernel of the same type as
the target one is generally the smallest, this kernel
does not differ so much from the other kernels
in IC,, in terms of the three metrics considered.
Moreover, the combination of target and candidate
RBF kernels has a poor accuracy (0.84).

The candidate white kernel in /C), is never selected
as the optimal kernel, unless the target kernel is
also the White kernel. Nonetheless, the precision
metric always has a value of about 95%, because
the confidence band is constant and corresponds
to the total variability of the considered field (i.e.,
the mean and max bandwidth range from 2 to
20 times the band value of the optimal candidate
kernel). When the white kernel is the target kernel,
the candidate kernel is selected randomly in /C),.
Nonetheless, the optimal parameters are set so
that the values of the "precision” and *mean band-
width’ are the same across all candidate kernels
(i.e., the ’precision’ is always close to 0.95 and
the mean bandwidth is ~ 2). Notice that the
precision of the periodic kernels against the target
white kernel is slightly smaller than those of the
other kernels, due to the more difficult parameter
optimization issue.

5. Conclusions

In this work, we have used Gaussian fields to esti-
mate the pipe drift conformance probability based
on the geometrical data relevant to a single pipe.
Our framework relies on the selection of the best
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Table 2.: Percentage of times in which the combination of each kernel has the smallest AIC value.

Periodic times

Periodic times Periodic times Matérn 1.5 +

Matérn 0.5 Matérn 1.5 Periodic times Matérn 0.5
Matérn 2.5 (length scale=7.0) 0.11 0.85 0.04
times Periodic (I = 2, P = 20)
RBF (length scale=3) 0 0.033 0
Rational Quadratic (Iength  0.083 0.025 0.0083
scale=2, a = 0.1)
Matérn 1.5 (Iength scale=5) 0.075 0.05 0.042
Matérn 2.5 (Iength scale=10) 0 0.86 0.092
White Kernel 0.12 0.05 0.0083
Matérn 0.5 (Iength scale=8) 0.033 0.05 0.0083

Matérn 1.5 Matérn 0.5 RBF White Kernel
Matérn 2.5 (Iength scale=7.0) 0 0 0 0
times Periodic (I = 2, P = 20)
RBF (Tength scale=3) 0 0 0.97 0
Rational Quadratic (length  0.38 0.47 0.033 0
scale=2, o = 0.1)
Matérn 1.5 (Iength scale=5) 0.83 0 0 0
Matérn 2.5 (length scale=10) 0.05 0 0 0
White Kernel 0.35 0.23 0.22 0.025
Matérn 0.5 (Iength scale=8) 0.042 0.87 0 0

Table 3.: "Precision’ of the different combinations of target (rows) and training (columns) kernels.

Periodic times

Periodic times Periodic times Matérn 1.5 +

Matérn 0.5 Matérn 1.5 Periodic times Matérn 0.5
Matérn 2.5 (Iength scale=7.0) 0.93 0.96 0.93
times Periodic (I = 2, P = 20)
RBF (Tength scale=3) 0.99 0.82 0.84
Rational Quadratic (length  0.93 0.91 0.90
scale=2, a = 0.1)
Matérn 1.5 (Iength scale=5) 0.93 0.93 0.89
Matérn 2.5 (length scale=10) 0.94 0.96 0.95
White Kernel 0.92 0.92 0.90
Matérn 0.5 (Iength scale=8) 0.94 0.91 0.91
Matérn 1.5 Matérn 0.5 RBF White Kernel
Matérn 2.5 (length scale=7.0) 0.99 0.995 0.80 0.96
times Periodic (I = 2, P = 20)
RBF (Tength scale=3) 0.995 0.99 0.84 0.95
Rational Quadratic (Iength  0.93 0.96 0.91 0.95
scale=2, o = 0.1)
Matérn 1.5 (Iength scale=5) 0.95 0.99 0.87 0.95
Matérn 2.5 (Iength scale=10) 0.99 0.997 0.76 0.96
White Kernel 0.95 0.95 0.95 0.95
Matérn 0.5 (Iength scale=8) 0.93 0.95 0.90 0.95
fitting kernel among a set of candidates through  kernels.
AIC and the computation of the probability that
the drift value is above the critical threshold in a
References

fine grid of points amid the measurement sections.
The application of the presented framework to a
case study has shown that even if all points in the
measurement sections have a drift value above the
critical threshold, this s not sufficinet to accept the
pipe. We have also assessed the robustness of our
kernel selection methodology through a sensitivity
analysis with respect to different known target

Adler, R. (1981). The Geometry of Random
Fields. Chichester: Wiley.

Adler, R. (2000). On excursion sets, tube formulas
and maxima of random fields. The Annals of
Applied Probability 10(1), 1-74.

Adler, R. and J. Taylor (2007). Random Fields and
Geometry. Springer Monographs in Mathemat-



Proceedings of the 30th European Safety and Reliability Conference and
the 15th Probabilistic Safety Assessment and Management Conference

Table 4.: Mean bandwidth of the different combinations of target (rows) and training (columns) kernels.

Periodic times

Periodic times Periodic times Matérn 1.5 +

Matérn 0.5 Matérn 1.5 Periodic times Matérn 0.5
Matérn 2.5 (Iength scale=7.0) 0.078 0.078 0.075
times Periodic (I = 2, P = 20)
RBF (Iength scale=3) 0.06 0.028 0.029
Rational Quadratic (Iength  0.89 0.88 0.84
scale=2, a = 0.1)
Matérn 1.5 (Iength scale=5) 0.57 0.54 0.52
Matérn 2.5 (length scale=10) 0.079 0.066 0.064
White Kernel 1.91 1.92 1.84
Matérn 0.5 (Iength scale=8) 1.32 1.32 1.27

Matérn 1.5 Matérn 0.5 RBF White Kernel
Matérn 2.5 (Iength scale=7.0) 0.15 0.45 0.16 1.85
times Periodic (I = 2, P = 20)
RBF (Tength scale=3) 0.48 1.36 0.029 4.18
Rational Quadratic (length  0.90 0.97 0.98 1.87
scale=2, o = 0.1)
Matérn 1.5 (Iength scale=5) 0.56 0.96 0.77 3.04
Matérn 2.5 (length scale=10) 0.10 0.50 0.21 35
White Kernel 1.99 1.99 1.99 2
Matérn 0.5 (Iength scale=8) 1.36 1.38 1.61 3.09

ics. New York: Springer.

Akaike, H. (1974, December). A new look at the
statistical model identification. /EEE Transac-
tions on Automatic Control 19(6), 716-723.

API (1994). Bulletin on formulas and calculations
for casing, tubing, drill pipe and line properties.
API Bulletin 5C3, 6th ed..

Azzimonti, D., J. Bect, C. Chevalier, and D. Gins-
bourger (2016). Quantifying uncertainties on
excursion sets under a gaussian random field
prior. SIAM/ASA Journal on Uncertainty Quan-
tification 4(1), 850-874.

Baker, J. W. and M. H. Faber (2007). Sampling
strategies to detect threshold excursions in ran-
dom fields. Reliability and Optimization of
Structural Systems: Assessment, Design, and
Life-Cycle Performance, 53.

Chevalier, C., J. Bect, D. Ginsbourger,
E. Vazquez, V. Picheny, and Y. Richet (2014).
Fast parallel kriging-based stepwise uncertainty
reduction with application to the identification
of an excursion set. Technometrics 56(4), 455—
465.

Crooks, E. (29 Feb. 2016). How can the oil
industry cut costs. Financial Times.

Duvenaud, D., J. R. Lloyd, R. Grosse, J. B. Tenen-
baum, and Z. Ghahramani (2013). Structure
discovery in nonparametric regression through
compositional kernel search.

Hovem, L. (2019). The outlook for the oil and gas
industry in 2019. DNV GL’s Industry Outlook
report.

ISO/IEC-GUIDE:98-4 (2012).  Uncertainty of
measurement - part 4: Role of measurement
uncertainty in conformity assessment.

ISO/TR-10400 (2007). Petroleum and natural gas

industries-formula and calculation for casing,
tubing, drill pipe and line pipe properties.

Pinciroli, L., M. Compare, E. Zio, G. Almeida,
and P. Filgueiras (2019). Gaussian fields for
predicting the drift of pipes for deep-water ap-
plications. Submitted for pubblication.

Rasmussen, C. E. and C. K. 1. Williams (2018).
Gaussian processes for machine learning.

Stone, M. (1979). Comments on model selection
criteria of akaike and schwarz. Journal of the
Royal Statistical Society. Series B (Methodolog-
ical) 41(2), 276-278.



