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IGT manufacturers offer maintenance service contracts that guarantee specific production rates. At every mainte-

nance action (i.e., corrective or scheduled), capital parts are removed from the GTs and repaired at workshop, unless

they are scrapped because they have reached their pre-fixed maximum number of working hours. The repaired parts

are put back at the warehouse for future use. The parts removed from the GTs are replaced by parts newly purchased

or taken from the warehouse. This maintenance policy entails a part flow, which is managed through decisions

on both the removed parts (repair or scrap?) and the parts to be installed on the GT (parts new or taken from the

warehouse?). Such decisions strongly impact the profitability of the maintenance service contract and depend on

many variables, e.g. remaining time up to the end of the contract, availability of spares, costs related to the repair

and purchase actions, etc. Furthermore, in the dynamic of the part flow, every decision conditions the successive

ones, as it modifies the warehouse composition. We formalize the part flow problem as a Sequential Decision

Problem and solve it by both integer linear programming framework and reinforcement learning, taking as reference

a scaled-down case study derived from industrial practice. Final considerations are drawn about both approaches.

Keywords: Sequential Decision Making, Logistic Optimization, Gas Turbines.

1. Introduction
Gas Turbines (GTs) employed in the Oil&Gas
industry are made up of expensive capital parts.
To avoid forced outages, which cause business in-
terruptions with severe economic losses, GTs are
periodically maintained. The management of the
flow of the GT parts undergoing maintenance is a
major issue for the profitability of the operation of
the GTs: at the end of every maintenance cycle,
the capital parts are removed from the GTs and
replaced by parts of the same type available at

the warehouse Boyce (2012). The removed parts
are scrapped if they have reached their pre-fixed
maximum number of working cycles or, other-
wise, they are repaired at the workshop and put
back in the warehouse, ready to be installed at the
next Maintenance Shutdowns (MSs) of another
GT in the same Oil & Gas plant. Thus, at every
periodic MS, a decision has to be made on both
the removed part (send it to the workshop for
repair or scrap it?) and the part to be installed on
the GT (new part or taken from the warehouse?).
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To take these decisions, Decision Makers (DMs)
have to consider that, on the one hand, the cost
of the repair actions and the risk of forced outage
due to the failures of the capital parts increase
with part age; thus, actions favoring the scrapping
of old parts are beneficial for risk and workshop
costs. On the other hand, scrapping old parts
entails purchasing new capital parts, whose costs
are typically larger than those of the repair actions.
Obviously, the parts installed on the GTs will
no longer be available at the warehouse for the
next MS and even if they are not scrapped, they
return to the warehouse with a reduced number of
remaining working cycles. Thus, the decision at
every MS modifies the decisions at the next MSs.
In this sense, the part flow management can be
framed as a Sequential Decision Problem (SDP)
Sutton and Barto (2018).
From above, it clearly appears that part-flow man-
agement is a complex issue, where the DM has to
seek for the least expensive sequence of mainte-
nance decisions over the GT operation time hori-
zon (i.e., the optimal policy), rather than greedy
decisions with the smallest immediate cost. To do
this, the DM has to consider many variables such
as the availability of spares, the remaining time up
to the end of the GT operation horizon, the costs
related to the repair and purchase actions, etc.
Moreover, GTs are normally expected to work
for a very long time, e.g., up to 25 years Boyce
(2012). This requires a thorough cost analysis to
take into account the effect of the time value of
the money through the discount rate of future ex-
penditures, which leads to prefer part flow policies
postponing as long as possible the most expensive
actions Gollier (2002).
To the authors’ best knowledge, despite the rele-
vance of part flow management for the Oil&Gas
industry, systemic approaches to address it are
lacking and GT maintenance DMs still rely on
experience-based rules such as Most Residual Cy-
cles (MRC): the removed parts are always re-
paired until the end of the GT time horizon and
the part with the largest residual life among those
available at the warehouse is installed on the GT;
new parts are purchased and installed on the GTs
only when the warehouse is empty. This simple
and intuitive rule guarantees the smallest repair
cost at the smallest probability of failure and it
delays the costly actions as long as possible. The
aim of this work is to formalize the part flow as a
SDP problem. This is solved by both integer linear
programming (ILP, Schrijver (1986); Bertsimas
and Tsitsiklis (1997)) and Reinforcement Learn-
ing, taking as reference a scaled-down case study
derived from industrial practice. The application
of both these algorithms allows obtaining the same
global optimal solution, which is compared with
that of the MRC policy to show that this latter
is not optimal. This highlights the need to treat
the part flow management through a systemic ap-

proach. A comparison of ILP and RL is also
outlined.
The paper is organized as follows: in Section 2,
the problem setting is presented. The ILP opti-
mization model is presented in Section 3, whereas
the corresponding RL model is presented in Sec-
tion 4. In Section 5, a realistic case study is
introduced to show the non-optimality of the MRC
policy. Finally, conclusions are drawn in Section
6.

Fig. 1.: Part of contract’s story

2. Model setting
Assume that in a Oil & Gas plant a number G
of GTs are operated and periodically maintained.
For simplicity, we assume that every GT contains
a single capital part, only, this assumption hav-
ing no impact on the generality of the proposed
framework, as the part flows of the capital parts
are independent on each other and, thus, they can
be optimized separately.
We also assume that the maintenance staggering is
such that two MSs are never done simultaneously
and that the repair time is negligible with respect
to the time between two MSs. This entails that
the parts removed and then repaired at any MS are
available at the next MS.
Finally, the Residual Useful Life (RUL) of the
parts indicates the r remaining working cycles;
then, the RUL values range between r = 0, in
case of parts that must be scrapped, and r = R, in
case of new parts.
The number of remaining scheduled MSs for ev-
ery GT is Z and, thus, a total number T = Z ·G of
MSs will be performed during the GT plant time
horizon.
Under these assumptions, the GT undergoing
maintenance at the k-th MS, k ∈ {1, . . . , T}, is
univocally identified by:

g = k − �(k − 1)/G� ·G (1)
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where �◦� is the integer part of its argument ◦.
Given this relationship, from now on the GTs are
indicated by the order of occurrence of their first
MS (Figure 1).
At the k-th MS, the plant manager has to take the
following decisions:

• For the part removed from the g-th GT,
decide whether to repair or scrap it.
Crep(r) is the cost of repairing a part
with r ∈ {1, .., R} remaining cycles,
whereas Cscrap is the cost of scrapping
a part.

• To replace the removed part, decide
whether to buy a new part or select one
from those available at the warehouse, if
any. Cpur is the cost of purchasing a new
part, whereas the cost of selecting a part
from the warehouse is zero, as the repair
costs have already been accounted for.

To model the constraints in the part flow man-
agement, we introduce the integer variable wr,k
to indicate the number of parts with RUL equal
to r available at the warehouse for the k-th MS
and the binary variables dr,k such that dr,k = 1
indicates that the GT maintained at k-th MS has
r remaining cycles. Obviously, at each MS, each
gas turbine must be provided with a single part,

thus
∑R

r=1 dr,k = 1 ∀k ∈ {1, . . . , T}.

3. ILP framework
At the k-th MS, we indicate by mr,k the binary
variable such that mr,k = 1 if the removed part
with r ∈ {1, . . . , R} remaining cycles is repaired
and mr,k = 0, otherwise.
With respect to the replacement of the removed
part αr,k is the binary variable such that αr,k = 1
if one out of the components with r ∈ {1, . . . , R}
remaining cycles is selected; αr,k = 0, otherwise.
α0,k is the binary indicator variable such that
α0,k = 1 if a new component is purchased and
α0,k = 0, otherwise.
From above, the cost incurred at the kth MS is:

Ck = α0,k · Cpur+

R−1∑
r=1

[Crep(r) ·mr,k + Cscrap · (1−mr,k)]

(2)

If we further assume that the time value of money
is represented by a constant discount factor γ ∈
(0, 1), the present value (PVk) of the cost Ck
incurred during k−th MS is

PVk = γ
tk−t0

Tγ · Ck

where tk is the time at which the k−th MS is
performed, t0 is the time at which the decisions

are made and Tγ the time at which the present
value is γ times the real value.
The present value of the total maintenance expen-
ditures incurred in the whole time horizon, which
is the objective function that the maintenance de-
cision maker wants to minimize, is given by the
sum of the PV of all costs incurred.
Within the ILP framework, the problem of finding
the optimal part flow can be formulated as follows:

min
a,m

T∑
k=1

(PVk) (3)

subject to the constraints 4-16, where

• dir,k indicates the RUL of the compo-
nents initially set on the GTs. Namely,
dir,k = 1, if the component on the GT
g which is first maintained at k + G-th
MS has r remaining cycles; dir,k = 0,
otherwise.

• wi
r indicates the initial composition of

the warehouse: wi
r is the number of com-

ponents with r remaining cycles initially
available in the warehouse.

Equation 3 defines the objective function of the
optimization, i.e. minimize the total discounted
maintenance costs over the whole life time of the
power plant, i.e. the sum of the present value of
all costs incurred at each MS.
Equations 4 state that at each MS, exactly one part
has to be set on the maintained turbine. Equations
5 constrain the choice of the RUL of the part to
be set on the turbine to the current availability
of the warehouse. Equations 6 state the multi-
period constraints for the warehouse, accounting
for the parts which are removed from the turbines
at each MS. Notice that, as stated in Equations
7, components that are removed from the GTs
have performed at least one cycle, thus the number
of their remaining cycles cannot be equal to R:
no repair actions can be performed on parts with
RUL= R. Equations 8 formalize that, at each
MS, only parts with r ≥ 1 remaining cycles can
be repaired, i.e. that parts with RUL=0 must be
scrapped. Equations 9-10 are the multi-period
constraints for the turbines, i.e. they link the
action performed at k−th MS to the part which
is set on the turbine during its MS.
Equations 11-14 define the integer values that can
be assumed by the variables in the model. Finally,
Equations 15 and 16 initialize the composition of
the warehouse (i.e., the initial number of compo-
nents having r remaining cycles ∀r ∈ {1, . . . , R})
and of the turbines (i.e., the number of remaining
cycles of the component which is set on each tur-
bine), respectively. Notice that we used negative
times to refer to events that occurred before the
first MS (i.e., the parts which were already set on
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R∑
r=0

αr,k = 1 ∀k ∈ {1, . . . , T} (4)

αr,k ≤ wr,k ∀k ∈ {1, . . . , T}, ∀r ∈ {1, . . . , R} (5)

wr,k+1 = wr,k − αr,k +mr,k ∀k ∈ {1, . . . , T}, ∀r ∈ {1, . . . , R− 1} (6)

mR,k = 0 ∀k ∈ {1, . . . , T} (7)

mr,k ≤ dr+1,k−G ∀k ∈ {1, . . . , T}, ∀r ∈ {1, . . . , R− 1} (8)

dr,k+1 = αr,k ∀k ∈ {1, . . . , T}, ∀r ∈ {1, . . . , R− 1} (9)

dR,k+1 = αR,k + α0,k ∀k ∈ {1, . . . , T} (10)

αr,k ∈ {0, 1} ∀k ∈ {1, . . . , T}, ∀r ∈ {0, . . . , R} (11)

mr,k ∈ {0, 1} ∀k ∈ {1, . . . , T}, ∀r ∈ {1, . . . , R− 1} (12)

wr,k ∈ {0, . . . ,W} ∀k ∈ {1, . . . , T + 1}, ∀r ∈ {1, . . . , R} (13)

dr,k ∈ {0, 1} ∀k ∈ {1, . . . , T + 1}, ∀r ∈ {1, . . . , R} (14)

dr,k = dir,k ∀r ∈ {1, . . . , R}, ∀k ∈ {−G+ 1, . . . , 0} (15)

wr,1 = wi
r ∀r ∈ {1, . . . , R} (16)

the GTs).
The ILP optimization task has been solved by
the command intlinprog of MATLAB R©,
which uses a simplex method in combination
with continuous relaxation, integer linear pre-
processing Andersen and Andersen (1995), cuts
Cornuéjols (2008) and branch and bound algo-
rithms Nemhauser and Wolsey (1999).

4. RL framework
In this Section, we give some details about the
model-free RL algorithm here developed for part
flow optimization. Generally speaking, RL is
based on the idea that the DM, who is usually re-
ferred to as agent, learns from his/her interactions
with the environment to achieve prefixed goals,
without knowledge on the updating dynamics of
the environment and the specific effect of his/her
actions. Thus, we only need to define the state of
the environment, the actions available at each state
and the corresponding rewards Sutton and Barto
(2018).
The action taken at the k-th MS is indicated as:

Ak =
R∑

ρ=0

(αρ,k · ρ) + μk · (R+ 1) (17)

where μk =
∑R

k=1 mr,k is the binary indicator
variable such that μk = 1 if a repair action
is performed on the part removed at MS k and
μk = 0 otherwise. The choice of not including
the RUL of the part removed from the GT in the
action definition is due to the fact that this does not
depend on the decision taken by the DM. Notice
that within this framework, Equations 6, 8 change

to 18 and 19 respectively:

wr,k+1 = wr,k − αr,k + μk · dr+1,k−G (18)

μk ≤
R∑

r=2

dr,k−G (19)

The state at the k-th MS is defined by the vector
Sk ∈ N

R+1, k ∈ {1, . . . , T}, whose j-th element
is:

Sk,j =

{
wj,k if j ∈ {1, . . . , R}
k if j = R+ 1

(20)

In words, the first R entries of the state vector at
the k-th MS define the number of parts with the
different RUL values available at the warehouse,
whereas the last entry updates the number of MSs
performed Li et al. (2017). Then, the total number
of possible states is T · (W + 1)R.
Notice that the state vector Sk does not encode
any information about the parts currently installed
on the GTs. This leads the SDP to not fully satisfy
the Markov property Sutton and Barto (2018),
Whitehead and Lin (1995), which requires that the
knowledge of the current state of the environment
be sufficient to predict its future evolution. To see
that this property is here infringed, we can notice
from Eq. (18) that the state reached by taking any
action is completely defined only if we know dr,κ
∀r ∈ {1, . . . , R}, ∀κ ∈ {k − G + 1, . . . , k} (i.e.,
if we know the RUL of the part installed on each
GT). Since these variables are not encoded in the
state vector, we observe that we have transitions
towards different states even if we take the same
action on the environment in a given state. As
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pointed out in Sutton and Barto (2018), the loss
of the Markov property typically affects the RL
capability of fast convergence to the optimal solu-
tion, although RL is eventually able to find it.
The choice of not including the RUL values of
the parts installed on the GTs into the state vector
has a twofold justification. On one side, including
them would broaden the vector state size, which
becomes T · (W + 1)R · RG: this leads to heavy
computational burdens, undermining the applica-
bility of the proposed framework. For example,
if we consider that in a real industrial application
R = 6 and G = 10, then the proposed definition
of state would reduce the state vector size by 610.
On the other side, we observe from Eqs. 18 and 9
that the environment state after G MSs is known
for any sequence of G actions. Then, the process
describing the evolution of the state is a G-order
Markov process, in the sense that the knowledge
of the sequence of states at the last G events is
sufficient to predict its future evolution. Thus, the
information about the RUL of the parts installed
on the GTs becomes redundant after G steps.
The base reward at the k-th MS is the opposite
of the maintenance cost, −Ck, as RL is usually
framed as a maximization task, whereby minimiz-
ing cost is equivalent to maximizing its opposite.
In the RL framework, each state-action pair is
described by Qπ(Sk, Ak), which measures the ex-
pected return starting from state Sk, taking action
Ak and thereafter following policy π Sutton and
Barto (2018):

Qπ(Sk, Ak) = Eπ[
T∑

t=k

(γt−k · (−Ct))|Sk, Ak]

(21)
where k ∈ {1, . . . , T}.
In this work, we use the SARSA(λ) algorithm
to find the best approximation of the values of
Qπ(Sk, Ak), k = 1, . . . , T , which simulates a
large number of state-action episodes while guar-
anteeing a faster convergence (e.g., Sutton and
Barto (2018); Wang et al. (2013)). The SARSA(λ)
algorithm relies the following updating formula
in Eq. 22, at every MS, k, where λ ∈ [0, 1] is
the parameter governing the eligibility trace and
αn ∈ [0, 1] is the learning rate at the n-th episode
(see Appendix for further mathematical details).
The choice of using SARSA(λ) among the avail-
able RL algorithms (e.g., Sutton and Barto (2018);
Szepesvári (2010)) is justified by the fact that
within the family of value-based RL algorithms,
SARSA(λ) has been shown to be a very effec-
tive on-policy method (Szepesvári (2010)). This
makes it simpler to extend it to the eligibility trace
paradigm, which guarantees fast and robust con-
vergence, especially in case of finite time horizon
SDPs (Sutton and Barto (2018)). On the contrary,
off-policy RL algorithms such as Q(λ) do not
allow updates that use all the rewards up to the

end of the finite horizon due to the presence of
explorative actions.

5. Case study
We consider the case study summarized in Table
1, derived from a real industrial application.
There are G = 2 GTs (first column in Table
1), which are maintained for Z = 10 cycles,
each (second column). The maximum component
RUL, R, and the maximum number of available
parts in the warehouse for each RUL value, W ,
are both set to three (third and forth columns in
Table 1). The costs are shown in columns 5-8 of
Table 1. These values are for illustration, only.
Moreover, we assume that the maintenance stag-

gering is such that the time distance between two
consecutive MSs is constant and that the present
value of costs decreases by γ at each MS (i.e.,
γk+1 = γ · γk, γ1 = γ). The discount rate is set
to γ = 0.99: on the one hand, if there are two
feasible solutions with same undiscounted cost,
γ < 1 leads to select that which postpones the
expenditures as long as possible. On the other
hand, γT=20 = 0.9920 	 0.82; thus, a purchase
action made at the last MS, T = 20, entails a cost
larger than that of a repair action performed at the
first MS (CT = 82 > Crep(2) = 50). Thus,
setting γ = 0.99 guarantees to find the sequence
of actions that yield the minimum overall cost and
with the largest delays for expenditures.
The application of the MRC rule to the con-
sidered case study is summarized in Table 2.
Namely, the first column reports the MS counter
k ∈ {1, . . . , T = 20}. The following three
columns define the warehouse composition at the
corresponding MS (i.e., wr,k, k ∈ {1, . . . , T =
20}, r ∈ {1, . . . , R = 3}). For example, at
the beginning of the considered time horizon, i.e.,
at k = 1, there are two parts with r = 1 re-
maining cycle (w1,1 = 2), one part with r = 2
remaining cycles (w2,1 = 1) and one new part
(w3,1 = 1). The following three columns detail
the action taken at the k−th MS. For example, at
the first MS, the RUL of the part installed on GT
g = 1 is r = 3 (column 7), the removed part with
r = 3 − 1 = 2 remaining cycles is repaired (i.e.,
m1,2 = 1, μ1 = 1) (column 8) and there is no
purchase of new parts (i.e., a1,3 = 1) (column 9).

Finally, the last two columns report the mainte-
nance cost Ck and its present value PVk = Ck ·
0.99k−1), respectively, at MS k ∈ {1, . . . , T =
20}. At MS k = 1, C1 = PV1 = 50: a
repair action is performed on a part with r = 2
remaining cycles, with no purchasing.
From the analysis of Table 2, the first purchase is
performed at MS k = 10 for a part to be installed
on GT g = 2. Then, at the two next MSs, the
warehouse is still empty and two more purchase
actions must be performed. The MRC solution
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Q(Sz, Az)←− Q(Sz, Az) + (γλ)(k−z)αn · [−Ck + γQ(Sk+1, Ak+1)−Q(Sk, Ak)]∀z ∈ {1, . . . , k}
(22)

Table 1.: Initial scenario and parameters

G Z W R CScrap Crep(r = 1) Crep(r = 2) Cpur γ

2 10 3 3 0 90 50 100 0.99

entails a final maintenance cost of 1290 and a
discounted cost of about 1161, in arbitrary units:
the cost contributions are due to 5 purchases of
new parts, 5 repairs of parts with r = 2 remaining
cycles and 6 repairs of parts with r = 1 remaining
cycles.
The part flow solution given by the application
of the MRC rule is compared with that provided
by the ILP and RL optimal solution, which is
summarized in Table 2 (the parameters used for
the RL optimal solution have been set by a series
of experiments; in particular, λ = 0.8). The
application of the optimal policy found yields a
final maintenance cost of 1150 and a discounted
cost of 1033, in arbitrary units (last row of Table
3). These values are smaller than those found by
the MRC policy (last row of Table 2). Thus, MRC
is not an optimal policy.
To justify the difference, we can note that the
optimal solution found by ILP and RL entails 7
purchase actions, 9 repair of parts with RUL = 2
and no repair of parts with RUL = 1. Then, al-
though purchase actions are more expensive than
repair actions of parts with RUL= 1, (Cpur =
100 > Crep(r = 1) = 90), the former entail
a larger final saving than the latter because they
allow re-using the parts in different cycles. Notice
also that the purchase action performed under the
optimal policy at time k = 17 is less expensive
than the repair action performed on a part with
RUL= 1 at time k = 4 under the MRC policy
(row 17 of Table 3, (PV17 = 85.1) vs row 4 of
Table 2 (PV4 = 87.3).

6. Discussion and Conclusions
In this work, we have framed a SDP for flow
management of GT parts. Its application to a
scaled-down case study derived from industrial
practice has shown that MRC fails to give the
most profitable part flow management policy, es-
pecially when the GTs are expected to work for
a long time and the time value of money is non-
negligible. In fact, the discount rate of future ex-
penditures strongly affects the profitability of the
policy, leading to very different optimal solutions
even under the same initial warehouse and GTs’
conditions.
Although the RL and ILP optimal policies are the

same, there are fundamental differences between
the two approaches. First, convergence of RL to
the optimal solution is guaranteed only on an in-
finite number of simulations, whereas ILP frame-
work always guarantees the optimality. However,
ILP may not be used in industrial practice, due to
the modeling effort it requires, which can entail
significant model changes upon small difference
in the optimization problem. Moreover, ILP is not
applicable to the cases in which the complexity
of the environment cannot be captured by linear
constraints.
On the contrary, RL is a model-free method,
which does not require the knowledge of the up-
dating dynamics. This allows easily encoding
additional features of the specific real applica-
tions, as it acts on the simulation of the deci-
sion process and, thus, selects actions from those
feasible, only. For example, although here not
considered, the complexity of the real industrial
applications requires SDP to encode many addi-
tional GT operational aspects, such as the possi-
bility of inspecting the parts without performing
maintenance (i.e., condition-based maintenance),
the different duration of the maintenance intervals
for parts of different technologies, the constraints
on the shareability of the parts on GTs with dif-
ferent operation temperatures, etc. Accounting
for these GT operation features requires encoding
constraints about the actions that can be taken in
each state, which are really difficult to set in linear
programming frameworks.
Moreover, RL algorithms allow encoding the
aleatory uncertainties, e.g., in the failure times of
the GT parts or in the non-negligible duration of
the inspection cycle, more easily than the other
algorithms.
The proposed RL framework suffers from some
limitations that can still prevent its full application
to the industrial practice in the current form: in
complex problems, the state-space becomes very
large, whereby the tabular representation of the
state-action value function is not practicable. For
this, action-value approximation techniques can
be used, instead of the tabular approach hereby
presented. This allows generalizing the state de-
scription, e.g., by removing the constraints on
the maximum number of parts available in the
warehouse for each RUL level or considering real-
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Table 2.: MRL policy

k w1,k w2,k w3,k RUL@GTg = 1 RUL@GTg = 2 RUL Installed Part Repair Purchase Ck PVk
1 2 1 1 2 1 3 Y N 50 50

2 2 2 0 3 0 2 N N 0 0

3 2 1 0 2 2 2 Y N 50 49.005

4 2 1 0 2 1 2 Y N 90 87.327

5 3 0 0 1 2 1 Y N 90 86.453

6 3 0 0 1 1 1 Y N 90 85.589

7 3 0 0 0 1 1 N N 0 0

8 2 0 0 1 0 1 N N 0 0

9 1 0 0 0 1 1 N N 0 0

10 0 0 0 1 0 3 N Y 100 91.351

11 0 0 0 0 3 3 N Y 100 90.438

12 0 0 0 3 2 3 Y Y 150 134.300

13 0 1 0 2 3 2 Y N 50 44.319

14 0 1 0 2 2 2 Y N 50 43.876

15 0 1 0 1 2 2 Y N 90 78.187

16 1 0 0 2 1 1 Y N 90 77.405

17 1 0 0 1 1 1 Y N 90 76.631

18 1 0 0 1 0 1 N N 0 0

19 0 0 0 0 1 3 N Y 100 83.451

20 0 0 0 3 0 3 N Y 100 82.617

- - - - 2 3 - - TOT 1350 1161

Table 3.: RL and ILP policies

k w1,k w2,k w3,k RUL@GTg = 1 RUL@GTg = 2 RUL Installed Part Repair Purchase Ck PVk
1 2 1 1 2 1 1 Y N 50 50

2 1 2 1 1 0 1 N N 0 0

3 0 2 1 0 1 2 N N 0 0

4 0 1 1 2 0 3 N N 0 0

5 0 1 0 1 3 2 N N 0 0

6 0 0 0 2 2 3 Y Y 150 142.64

7 0 1 0 1 3 2 N N 0 0

8 0 0 0 2 2 3 Y Y 150 139.810

9 0 1 0 1 3 2 N N 0 0

10 0 0 0 2 3 3 Y Y 150 137.02

11 0 1 0 1 3 2 N N 0 0

12 0 0 0 2 2 3 Y Y 150 134.300

13 0 1 0 1 3 2 N N 0 0

14 0 0 0 2 2 3 Y Y 150 131.682

15 0 1 0 1 3 2 N N 0 0

16 0 0 0 2 2 3 Y Y 150 129.008

17 0 1 0 1 3 3 N Y 100 85.146

18 0 1 0 3 2 2 Y N 50 42.147

19 0 1 0 2 2 2 Y N 50 41.726

20 0 1 0 2 1 2 N N 0 0

- - - - 1 2 - - TOT 1150 1033

valued RUL estimations.
These results pave the way to research work to
systemically address the part flow management
issue.
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