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We have recently developed a novel Dynamic Weight In Motion (DWIM) system for freight carriages, which is
based on a combination of Discrete Fourier Transform (DFT) and ELastic NET (ELNET) linear regression. To
improve this method, we propose an unsupervised domain adaptation method based on subspace alignment. This
learns a mapping function to align the features extracted from data of carriages of known load in a given DWIM
setting with those extracted from carriages of unknown load in another positions. The application of the proposed

method provides promising results.
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1. Introduction

Developing effective train weighing systems is of
great interest in the railway industry, as accurate
load estimates can be used by railroad companies
for checking overloads, identifying potentially un-
safe carriages and improving railway maintenance
planning. Nowadays, train weight measurements
are typically taken by static systems, which re-
quire the trains to stop on the weight scale. Thus,
static weighing is time-demanding, with adverse
consequences on the wheeling of the network,
the capacity of delivering trains from intermodal
terminals for good shipment, etc.

On the contrary, Dyanamic Weight in Motion
(DWIM) systems avoid carriages stopping, with
significant benefits to circulation timing and busi-
ness (Poulikakos et al. (2008); Mayer et al. (2012);
Allotta et al. (2015)).

We have recently developed a novel Dynamic
Weight In Motion (DWIM) system for freight
carriages. This is based on a combination of
Discrete Fourier Transform (DFT) and ELastic
NET (ELNET) linear regression (Cannarile et al.

(2020)) and provides very accurate carriage load
estimates. However, the applicability of the de-
veloped DWIM method is limited to the railway
branch where data are collected from: the ballast
therein strongly influences the system response
to loads and, thus, makes the trained model not
applicable to other branches, where training and
test data are drawn from different probability dis-
tributions.

On the other hand, the solution of training a new
DWIM model on the data collected from the spe-
cific branch where sensors installed is not practi-
cable, given the obvious difficulties in obtaining
the ground truth loads (e.g., by installing a static
weighing system).

To extend the applicability of the DWIM system
trained on a railway branch to other branches,
we investigate the use of an unsupervised domain
adaptation method based on subspace alignment
(Fernando et al. (2013)). This learns a map-
ping function aligning the subspace generated by

the first K Principal Components (PCs) extracted
from data of carriages of known load in a given
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DWIM setting (source domain) with those ex-
tracted from carriages of unknown load in another
location (target domain).

The choice of relying on subspace alignment
based on PCA to perform unsupervised domain
adaptation is mainly justified by the difficulty in
obtaininig large training sets of labelled data. In
these conditions, recent techniques based on Deep
Neural Networks (DNN) cannot be properly ex-
ploited, as these require a large number of la-
belled data for effective training (Kouw and Loog
(2019)).

After the alignment, the DWIM system mapping
the aligned features of a carriage with the corre-
sponding load, is developed by training an Elastic
NET (ELNET) regression model (Zou and Hastie
(2005); Cannarile et al. (2019)) on the aligned
source data. This can be used to infer the loads
of carriages of unknown load in the target domain.
The application of the proposed method provides
promising results.

The paper is organized as follows: Section 2 states
the problem; Section 3 details the proposed solu-
tion. The application of the methodology to real
data is described in Section 4, whereas Section 5
draws the work conclusions.

2. Problem Statement

We consider a standard supervised learning setting
with available training
dataset Dg = {zg, yi}i:17'_,Ns , containing the

vectors g; € X C RE of K features extracted
from strain signals recorded from the i*" carriage
(hereafter referred to as training instance), and the
corresponding labelled load y; € V) C Rof

To build a DWIM system, we have to find a
regression function

y=f(z) ey

that associates to any test example ;s from
a carriage of unknown load, the corresponding
output load Ytest = f(wtest)'

We have developed a method to build a DWIM
system in the case in which the test data x.; are
gathered from the the same sensors installed on
the same rail branch of the trainig dataset Dg.
However, this DWIM system may not perform
well on test data Dy = {:L'Ti}izleT collected

from a different rail branch, as the ballast therein
strongly influences the system response to loads.

Formally, we can state that training and test data
from different rail branches may be drawn from
different probability distributions over the same
feature-label space pair X' x ). These distributions
are referred as source domain and target domain,
indicated by ps(x,y) and pr(x, y), respectively.

Our goal is to develop a DWIM system capa-
ble of predicting the labels of test instances (i.e.,
carriages) drawn from a target domain given the

labelled samples drawn from a source domain and
unlabeled samples drawn from the target domain
itself. This particular learning setting is known as
unsupervised domain adaptation.

Notice that the term unsupervised referes to the
fact that we assume that labelled instances in the
target domain are lacking.

3. Proposed Solution

Our solution relies on the assumption that the
different domains contain both domain-specific
noise and common feature subspaces. Adaptation,
then, consists in finding these common feature
subspaces and, thus, mapping the source data to
the target data.

In details, we rely on the subspace alignment
method proposed in Fernando et al. (2013), which
seeks a domain invariant feature space by learning
a mapping function that aligns the source sub-
space with the target one. The proposed solution
is pictorially shown in Figure 3.
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Fig. 1. The proposed unsupervised domain adptation based
DWIM system

We first construct a feature subspace of size
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K < K, composed of the K most impor-
tant eigenvectors induced by Principle Component
Analysis (PCA). Then, we directly reduce the
discrepancy between the two domains by moving
the source and target subspaces closer. This is
achieved by optimizing a mapping function that
transforms the source subspace into the target one.
In details, let X g and X 7 be the matrices of size
K x K formed by the first K eigenvectors of the
covariance matrices estimated from z-normalized
source and target data D® and D7, respectively.
Alignment is achieved by learning a K x K matrix
M such that the aligned source subspace X 4 =
X sM is as close as possible to the target sub-
space, from the Bergman divergence perspective
(Bregman (1967)).

In details, we solve the following minimization
problem:

M* = argmin,, F(M) 2)

where we use the Frobenius norm F'(M) as
Bregman divergence metrics Bregman (1967);
Fernando et al. (2013); Gloub and Van Loan
(1996):

F (M) = ||A||7 = Tr(AA™) (3

where A = XgM — X and AT s its conju-
gate transpose. The Frobenius norm is invariant to
orthonormal matrix multiplications. Then, Eq. 3
can be re-written as

T T 2
F (M) = HXSXSMfXSXTHF
2
-fpr-xixo, @

where X 5 denotes the transpose of matrix Xg.
From Eq. 4 we have that the minimization prob-

lem in Eq. 2 is solved when M = X 5 X ;.. This
entails that the new target aligned source coordi-
nate system is equivalent to X =X g X gX T

Then, the source data are projected onto the target
aligned subspace, X 4, obtaining the transformed
source data D4 = {z a4, yi}i:l,..,Ns’ whereas the

target data are projected onto the target sub-
space X 7 obtaining the transformed target data
Dr =A{zritioy N,
zpi =25 Xs X§Xpi=1,...,Ns (5
zr; =x; Xy, =1,...,Np (6)

3.1. Elastic net linear regression

We learn an elastic-net linear regression model on
labelled aligned source data D 4. The developed

regression model is then used to estimate the un-
known load yp; of target carriage z7;.

Namely, the aligned
source data Dy = {zAi,yi}izles are used to
estimate the parameter of a linear model which is
assumed to relate the load y; with feature vector
ZAis

K
yi=Bo+ Y zai k] Br + € @)
k=1

where 8 = [y, ... ,ﬂl—{]T are unknown model
parameters and ¢; is an error term. These param-
eters are estimated solving the following regular-
ized learning problem

argmin L (Bo,8)} + X |aPy (B) + (1 —a) P> (8)] (8)

{Bo.B}

where

1 N¥ K
L(ﬂoaﬁ)zmz yi—Bo— Y zai k] B
=1 k=1

9)

and where P, (-) and P»(+) denote the LASSO

and the ridge penalties, respectively (Zou and
Hastie (2005); Friedman et al. (2010)):

Q
P (B) =Bl = 18l (10)
q=1

Q
P (B)=Bll, =D 16> an

q=1

The effect of the LASSO penalty is that of
performing automatically feature selection, by
shrinking some coefficients (;, towards zero. This
enhances the accuracy and interpretability of the
statistical model. The effect of the ridge penalty
is that of limiting the magnitude of the model
parameters, thus preventing the model to overfit
the training data.

In Eq. 8 the hyperparameter A > 0 is a user-
specified regularization parameter: the smaller its
value, the larger the level of regularization im-
posed (Zou and Hastie (2005); Friedman et al.
(2010)).

The hyperparameter o € [0,1] is a mixing pa-
rameter, which trades off the importance of the
LASSO and ridge penalties.

These hyperparameters can be set using a robust
cross validation procedure as described in (Can-
narile et al. (2019); Friedman et al. (2010)).
Finally, the load of a new test example in the target
domain z7; is predicted as
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K
Uri=PBo+ Y zest k] B (12)
k=1

where are the parameter estimates

{5o.B}
resulting from the minimization of the convex
program in Eq. 7.

4. Case Study

We have available real data from Ng = 192
different carriages and from Np = 49 carriages.
These have been collected from pairs of strain
sensors installed, respectively, on a freight inter-
modal terminal near Milano (terminal A), and a
train workshop facility cose to Alessandria, Italy
(terminal B).

In both terminals, the measuring facility is made
up of optical sensors installed on a recently tam-
pered straight railtrack section with standard and
constant gauge. The section is 10 m long, with
proper stiffness and no impairments. The optical
sensors are connected by fiber optics and their
data are acquired at sampling frequency f,.qre =
1K Hz. The acquisition system is a depolarized
MOI Hyperion si255, controlled by a CPU; this
runs algorithms that identify the train passing on
the rail and cut the corresponding signal with 10s
time margin before and after.

In this case study, we know the ground truth
load of the carriages in both experimental setups.
Nonetheless, to validate the proposed methodol-
ogy we have considered the Ng carriages data
collected in terminal A as the source data and the
Ny carriages data collected in terminal B as the
target data.

The strain signals have been pre-procecessed and
K = 256 amplitude features have been extracted
using Discrete Fourier Transform (DFT). This
way, we obtain the source and target datasets Dg
and D, respectively. For further details on fea-
ture extraction, please refer to our previous work
(Cannarile et al. (2020)).

The extracted features have been scaled to have
zero mean and unit variance. Yet, notice that
the number of features extracted is larger than
that of source and target instances. Then, PCA
cannot be directly applied. For this, we have
resorted to the truncated PCA, keeping the first
K = Nr = 49 principal components. This
allows projecting the source and target data in
their corresponding subspace using Egs. 5 and 6,
respectively. Finally, the parameters of the linear
model have been estimated solving the regularized
learning problem in Eq. 7 using only the aligned
source data.

All computations have been performed using an
Intel Core i7-7770 CPU at 3.60 GHz processor
with 8 GB RAM in Python 3.6 environment.

MRE
M1 0.065
M2 0.280

4.1. Results

Table 1 compares the performance of the proposed
method (M1) with that obtained by applying di-
rectly the DWIM system based on ELNET linear
regression without performing feature alignment
(M2). That is, the DWIM system is trained using
not the aligned data Ds = {&si,¥i}t,—y
. As performace metric, we have reported the
Mean Relative Error (MRE) resulting from the
application of the developed DWIM systems on
target data.

From Table 1, we cannot but conclude that the
proposed method drastically improves the perfor-
mance of a DWIM system, with respect to that
applied directly to target data without performing
feature alignment.

5. Conclusions

In this work, we have proposed an unsupervised
domain adpatation method, which relies on sub-
space alignment to extend the applicability of
a DWIM system to rail branches different from
that where data have been collected to develop
it. The proposed method has shown to drastically
improve the performance of a DWIM system di-
rectly applied to target data without performing
subspace feature alignment. The promising results
pave the path to future investigation.
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