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We present a novel approach for tracking a global risk index of a safety-critical industrial plant. This approach, called
Integrated Risk Index by Sapio (IRIS), considers safety as a critical process variable and relies on a combination
of techniques such as Bayesian Networks, Multi Attribute Value Theory, Cognitive Reliability and Error Analysis
Method. The approach is described through a case study of the cryogenic gas production industry.
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1. Introduction
Industry 4.0, the fourth industrial revolution, aims
at creating smart factories, equipped with disrup-
tive technologies such as advanced robotics, high
computing power and connectivity, etc., which are
integrated with analytical and cognitive technolo-
gies that enable machine-to-machine (M2M) and
machine-to-human (M2H) communication Her-
mann et al. (2016); Drath and Horch (2014). One
of the opportunities of Industry 4.0 is Predictive
Maintenance (PdM), which makes use of con-
dition monitoring data for detecting, diagnosing
and prognosing anomalies to dynamically manage
maintenance. The industrial-scale deployment
of PdM involves many other aspects, including
safety. Intuitively, data collected on the system

from appropriately installed sensors can be used
for risk monitoring aimed at promptly actuating
informed responses to incidents and accidents.
Only few experiences of condition monitoring
for safety applications have been proposed (e.g.,
Coble et al. (2015); Daigle et al. (2017); Zio
(2018); Di Maio et al. (2018)), and a structured
modeling approach that considers risk as a moni-
tored process variable in safety-critical industrial
contexts is still not available, to the authors’ best
knowledge.
In this paper, we develop the Integrated Risk Index
by Sapio (IRIS) innovative approach that relies
on condition monitoring data, and operation and
maintenance information for tracking a global risk
index of a safety-critical plant. This approach
emerges from an original idea by SAPIO, which
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has taken shape in SAPIO environment and has
resulted in the application for a patent. Although
IRIS is specialized for the process industry, its
domain of application can be extended to other
industrial sectors with few changes.
The paper is organized as follows. Sections 2-4
illustrate the new approach and detail the tech-
niques adopted to deploy it in practice. Section
5 shows an example of application. Section 6
concludes the work.

2. RISK MODELING THROUGH
BAYESIAN NETWORKS

Fault Trees (FTs, Zio (2007)) are widely adopted
in quantitative risk analyses performed to verify
the fulfillment of legislative and regulatory safety
constraints to operate a safety-critical plant. For
this reason, they are taken as the basis of the IRIS
approach.
FTs are developed by expert risk analysts and used
to estimate the probability of occurrence of system
failure Top Events (TEs), which are identified as
potential events in accident sequences by tradi-
tional risk analysis methods (e.g., HAZard and
OPerability (HAZOP) analysis and Failure Modes
and Effect Analysis (FMEA)), and reported in the
plant Risk Assessment Document (RAD).
In IRIS, FTs are first automatically converted
into Bayesian Networks (BNs) by a consolidated
methodology Khakzad et al. (2013); Bobbio et al.
(2001). The reason of converting to BNs is that
this allows relaxing some practical limitations of
FTs Bobbio et al. (2001):

(1) BNs can easily encode multi-state Ba-
sic Events (BEs, e.g., working, slightly
deteriorated, strongly deteriorated, etc.)
instead of only binary (i.e., working,
faulty). This is shown in Section 3.2;

(2) The logical relationships between conse-
quence events and causes, modelled in
FT by logic gates such as AND and OR,
can be easily modified to accommodate
the uncertainty in the event consequence
of the combinations of failures Bobbio
et al. (2001), see Figure1;

(3) BNs simplify the modeling of functional
dependencies among BEs Heckerman
et al. (1995), which are typically con-
sidered as statistically independent in FT
analysis Zio (2007);

(4) BNs help troubleshooting: the field evi-
dences collected from the system can be
used to update the conditional probabil-
ities throughout the BNs and infer the
most probable cause of failures Jensen
and Nielsen (2007).

Fig. 1.: Example of accommodation of uncer-
tainty in logic gates. Top: fully Boolean truth
table of an AND gate. Bottom: uncertain conse-
quence events.

3. IRIS
The underlying idea of IRIS is that the overall risk
of a process plant depends on key variables, which
are represented as BEs in the system FTs. These
variable can be classified as Boolean variables,
Analog variables, Non-sensored barriers and Be-
havioral barriers, as detailed in the following sub-
sections.

3.1. BOOLEAN VARIABLES
Boolean variables include monitored variables
that trigger alarms upon failure detection. An
example is the signal monitoring the activation of
a pressure switch when over-pressure is detected.
An initial occurrence probability is assigned to the
BE of a FT representing a boolean variable. When
the BE occurs, the probability is set to 1 and the
system TE probability is updated accordingly.

3.2. ANALOG VARIABLES
Analog variables include monitored signals of
process variables, such as temperature, pressure,
flow. The plant risk increases when the signals
of these variables fall out of their nominal ranges,
which depend on the plant operational settings.
The BN capability of modeling multi-state vari-
ables allows easily encoding the analog variables
in the risk model. Namely, the range of any
monitored signal is discretized in steps (Figure
2, which are assigned gradual failure probability
values depending on their proximity to the failure
threshold (see Figure 3 for an example referring
to the occurrence of a leakage event). The proba-
bility of an analog variable being in each state can
be updated in real-time, according to the evidence
data collected by the installed sensors. Then, the
overall system risk is also automatically updated.

3.3. NON-SENSORED BARRIERS
Plant risk also depends on non-sensored compo-
nents, for which there is no monitoring data to
track their health states. For example, consider the
Pressure Safety Valve (PSV), which is a dormant
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Fig. 2.: Discretization of an analog signal

Fig. 3.: Failure probability distribution of a multi-
state variable. This can be updated over time,
based on the proximity to the thresholds reached
by the signal

component, whose health state is not known, un-
less safety checks are performed.
The health state of a non-sensored barrier, how-
ever, depends on Influencing Factors (IFs) such as
age and maintenance efficiency, which can affect
the barrier reliability, quantitatively represented
by its failure rate (FR) or ”on-demand” response
probability.
To consider the contribution to risk of the non-
sensored barriers, we link their health states to
tracked IFs. Namely, we assume that the inherent
reliability behavior relates to the IFs ranging in
pre-fixed design conditions. An improvement or a
worsening of these conditions changes the barrier
reliability (or dually, its failure probability).
To encode in the global risk index the monitoring
of the IFs and their effects on the failure proba-
bilities, we use the Multi Attribute Value Theory
(MAVT).

3.3.1. Multi Attribute Value Theory

MAVT is a systematic approach to address multi-
criteria decision problems. The key idea is to
identify and organize in a hierarchical structure
(i.e, the value tree) all the factors influencing the
main criterion, which stands at the highest level of
the hierarchy.
In IRIS, we consider the Updating Likelihood
Factor (ULF) at the highest level, L0, of the value
tree, which is the quantitative factor used to update
the barrier FR.
The hierarchical structure is built depending on
the specific barrier. For example, the MAVT
hierarchical tree for a PSV is reported in Figure
4. Two main IFs are identified at level L1: ”Bar-
rier features” and ”Barrier past events”, which

are further decomposed in their attributes: {Age,
Technology, Operator Technical Evaluation} and
{Level of Utilization and Maintenance History},
respectively. These factors are tracked and contin-
uously updated.
For each factor at level Lh in the hierarchical
structure, the experts qualitatively evaluate the rel-
ative importance of its sub-factors at level Lh+1,
translated into importance weights. The sum of
the weights of the subfactors at level Lh+1 of each
factor at level Lh must sum to 1.
The method adopted to obtain importance weigths
from expert qualitative preference statements is
the extension proposed in Salo and Hämäläinen
(1995) of the PAIRS method Salo and Hämäläinen
(1992). The method allows accommodating im-
precise preference statements like ”the i-th at-
tribute is more important than the j-th attribute”.
Finally, all the barriers of the same type in the
plant, here referred to as alternatives Punkka and
Salo (2013), are assigned a score in the range [0,
100] with respect to every leaf attribute. This
score indicates the barrier relevance for the at-
tribute with respect to the best alternative (i.e.,
score 100) and the worst alternative (i.e., score 0).
To obtain the scores for all the alternatives, we
apply the SWING method Von Winterfeldt and
Edwards (1986). For example, Table 1 shows
the extreme conditions of the PSV barrier feature
attributes. The best alternative with respect to Age
is the new PSV (i.e., age 0), whereas the worst
is older than 20 years. These limit values are
assigned scores 100 and 0, respectively. Then,
expert judgement is used to evaluate the other
alternatives with respects to the limit conditions
and with respect to each other Von Winterfeldt and
Edwards (1986). For the PSV case, this yields the
curve in Figure 5.

Fig. 4.: Example of Factor Tree for a non sensored
barrier

If the mutual preferential independence condi-
tion applies Jong and Stone (1976), we can con-
sider the additive function to calculate the overall
value V (xj) of each barrier xj in a bottom-up
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Table 1.: Score limits (SWING method)

Attribute Best case Worst case

Age <1y >20y
Technology Innovative Obsolete
Utilization level Under-stressed Over-stressed
... ... ...

Fig. 5.: Example of score curve for ”Age” at-
tribute

logic:

V (xj) =

n∑

i=1

wi · vi(xj) (1)

where n is the number of leaf attributes, vi(xj)
is the score of the alternative j with respect to the
i-th attribute. wi is the importance weight of the i-
th attribute with respect to the others, obtained by
propagating the weights in each level through the
hierarchical tree Jong and Stone (1976); Punkka
and Salo (2013); Salo and Hämäläinen (1995).
The value obtained from Eq. 1 for the barrier is
mapped into a corrective multiplicative factor of
its FR, elicited from experts or inferred from sta-
tistical data. Table 2 shows the corrective factors
for the PSV. For example, the FR of the worst PSV
of the plant is almost double of that of the best
PSV.

Table 2.: ULF attribution

Vj Value

[0-10) 1.3
[10-40) 1.1
[40-60) 1
[60-90) 0.9
[90-100] 0.7

3.4. BEHAVIORAL BARRIERS
Human factors can strongly contribute to the plant
risk. In IRIS, the Cognitive Reliability and Error
Analysis Method (CREAM, Hollnagel (1998)) is
used to estimate the human reliability, linked to
tracked influencing factors such as the time of the
day and the expertise of the operators.
CREAM is based on the COntextual COgnitive
Model (COCOM), which assumes that any human
action description must recognise that it is made in
a certain influencing context and that human ac-
tions are the result of the smart expertise adapted
to circumstance needs, rather than the result of a
predetermined sequence of events response Holl-
nagel (1998). Consequently, COCOM considers
expertise and control as two separated aspects of
human performance: expertise is a relatively small
selection of cognitive functions (human cogni-
tion modeling), whereas control describes how
experience is implemented. There are four con-
trol modes: strategic, tactical, opportunistic and
scrambled.
COCOM uses a classification scheme for possi-
ble manifestations of erroneous actions and most
possible causes. At the highest level of the clas-
sification scheme, there is the distinction between
effects (phenotypes or manifestations) and causes
(genotypes) of the error.
CREAM translates COCOM genotype classifica-
tion into a set of Common Performance Condi-
tions (CPCs). IRIS considers NCPC = 9 CPCs
that are generally used in the literature Hollnagel
(1998):

(1) Organization adequacy;
(2) Work condition;
(3) Human-machine interface adequacy and

operational support;
(4) Plans/procedures availability;
(5) Number of simultaneous actions;
(6) Available time;
(7) Time of the day;
(8) Training and experience adequacy;
(9) Crew collaborating quality.

Phenotypes are the modes of error of actions. In
the CREAM methodology, the error modes are
divided into 4 categories: actions at wrong time,
actions of wrong types, actions on the wrong ob-
ject and actions in the wrong place.
CREAM proceeds as shown in Figure 6. Namely,
there are two application levels of CREAM: basic
and extended. The basic version aims at making a
preliminary screening of human interactions with
control processes: for every human task, we esti-
mate the Contextual Influence Index (CII), which
quantitatively defines the influence of the context
on the operator availability. To do this, we identify
the number of times the considered CPCs lead to a
reduction and/or an improvement of the operative
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performances:

CII =
∑

reduced

−
∑

increased

(2)

The CII value allows identifying the actual con-
trol mode (among the four identified by COCOM)
of the operator in the considered context. The CII
values can be also related, with rough estimates, to
the operator error probability (Table 3, e.g., Akyuz
and Celik (2015)).

Table 3.: Relationship between control modes, CII
and human error probability

Control mode CII Human error prob.

Strategic [-7, -3] [0.5E-5, 1.0E-2]
Tactical [-3, 1] [1.0E-3, 1.0E-1]
Opportunistic [2, 5] [1E-2, 0.5]
Scrambled [6, 9] [1E-1, 1]

Fig. 6.: Methodology

If the control mode is not strategic, then the
extended CREAM is adopted. This is made up
of the following steps:

(1) Hierarchical Task Analysis (HTA): the
sub-tasks of the task under investigation
are examined throug the next steps (2)-
(5);

(2) Building of the required cognitive pro-
files. According to the COCOM princi-
ples, the cognitive activities linked to ev-
ery sub-task are individuated and linked
to the elementary cognitive functions
(Table 4, first column);

(3) Analysis of the phenotypes associated to
the elementary cognitive functions. Ta-
ble 4 reports the CREAM phenotypes
and the related Cognitive Failure Prob-
ability, CFP0, in columns 2 and 3, re-
spectively.

(4) Detailed evaluation of the CPCs. The
methodology in Akyuz and Celik (2015)
is considered to estimate the Perfor-
mance Index Indicators (PIIs), which
quantify the effect of CPCs on the oper-
ator performances (Table 6). This gives
the updated value of CII:

CII =

NCPC∑

i=1

PIIi (3)

The quality levels of some CPC (e.g.,
Time of the Day, Training and experi-
ence) can be tracked to continuously up-
date their values.

(5) Estimation of the Cognitive Failure Prob-
ability (CFP, He et al. (2008)) of the sub-
task:

CFP = CFP0 · 100.25CII (4)

(6) Task failure probability estimation based
on the probability of failure of its sub-
tasks. To do this, the rules detailed in
Table 5 are adopted.

Table 4.: Cognitive activities, error modes and
corresponding nominal probabilties

Cognitive function Error mode CFP0
Observation O1: wrong object 1E-3

O2: wrong identification 7E-2
O3: missed observation 7E-2

Interpretation I1: wrong diagnosis 2E-1
I2: decisional error 1E-2
I3: late interpretation 1E-2

Planning P1: prioritization error 1E-2
P2: inadequate planning 1E-2

Execution E1: wrong action 3E-3
E2: wrong action timing 3E-3
E3: action on wrong object 5E-4
E4: action not planned 3E-3
E5: missed action 3E-2

Table 5.: Rules to combine the human error prob-
abilities of sub-tasks

Task Sub-task Task error
description dependence probability

Parallel tasks High Ptask = minPsub−task

Low/none Ptask =
∏

Psub−task
Series tasks High Ptask = maxPsub−task

Low/none Ptask =
∑

Psub−task
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Table 6.: CPC and performance availability

CPC Qualitative level Expected effect PII

Organization Very efficient Improved -0.6
adequacy Efficient Not significant 0

Inefficient Worsened 0.6
Inadequate Worsened 1

Work conditions Favorable Improved -0.6
Compatible Not significant 0
Incompatible Worsened 1

HMI Supportive Improved -1.2
adequacy Adequate Not significant -0.4

Tollerable Not significant 0
Inappropriate Worsened 1.4

Plans/procedures Appropriate Improved -1.2
availability Accettable Not significant 0

Inappropriate Worsened 1.4

Simultaneous Less than capability Not significant 0
actions Equal to capability Not significant 0

Inappropriate More than capability 1.2

Available time Adequate Improved -1.4
Temporary inadequate Not significant 0
Continously inadequate Worsened 2.4

Time of the day Day Not significant 1
Night Worsened 0.6

Training and High experience Improved -1.4
experience Low experience Not significant 0

Inadequate Worsened 1.8

Crew Very efficient Improved -1.4
collaboration Efficient Not significant 0

Inefficient Not significant 0
Inadequate Worsened 1.4

4. IRIS EVALUATION
In a single process plant, several TEs are built
and accepted by the authorities if their occurrence
probabilities are smaller than the corresponding
acceptability thresholds.
The risk indicator must refer to the risk of
the overal plant, which generally includes f =
1, ..., F production processes.
The risk indicator for the each process can be esti-
mated applying the OR logic to all the related TEs,
while properly considering the BEs appearing in
multiple FTs. To do this, we have to properly
consider the different order of magnitudes of the
TE probabilities: the largest ones will prevail in
the risk indicator calculation and they may render
negligible even sensible increase of the occurrence
probabilitites of more rare TEs.
To address this issue, the probability of every TE
is partitioned in intervals Ii = [p

i
, pi], i = 1, ..., 4,

so that p1 equals the probability value accepted by
the safety authorities to operate the plant.
To communicate the risk to the plant operators,
the intervals Ii are mapped into intervals li =
[li, li] ⊆ [0, 10], as indicated in Table 7. In par-
ticular, the intervals li are not equally spaced: the
larger length of l1 = [0, 5] allows emphasizing the
small changes of the TE probability due to events
not directly resulting in safety consequenses, such
as failures of redundant components, delay in
maintenance of non-sensored barriers, etc. The

resulting sensitivity of the risk index to these
events, while still remaining within the first level,
is expected to improve the credibility of the index
itself by the plant operators.

Table 7.: Residual Risk Indicator intervals

Level Name Range li Prob. Ii

i = 1 Normal [0-5] [1e− 20, 1e− 8]
i = 2 Inspection [5-6.5] [1e− 8, 1e− 5]
i = 3 Risky [6.5-8] [1e− 5, 1e− 2]
i = 4 Alert [8-10] [1e−2, 1]

We define the IRIS index of the k-th TE of the
f -th process, f = 1, ..., F, k = 1, ...,Kf as:

IRISf
k = IRISinf+

IRISsup − IRISinf

log(psup)− log(pinf )
· (log(pk)− log(pinf ))

(5)

where:

• pk represents the current estimation of
the probability of the k-th TE.

• pinf = maxi{pi|pi ≤ pk}.

• psup = mini{pi|pi > pk}.
• IRISinf = lj , j = argmaxi{pi|pi ≤
pk}.

• IRISsup = lj , j = argmini{pi|pi >
pk}.

In words, we determine the value of i ∈ {1, ..., 4}
by comparing pk with the extreme points of the
four intevals Ii. Then, log(pk) is rescaled with
respect to the orders of magnitude of the extreme
points of Ii and linearly mapped onto li. Notice
that considering the logarithmic scale for the prob-
ability allows appreciating very small variations.
The IRIS value for the f -th production process,

f = 1, .., F , is the average of the indices IRISf
k ,

k = 1..,Kf weighted by the corresponding nor-

malized damage dfk ∈ [0, 1]:

IRISf =

∑Kf

k=1 IRISf
k · dfk∑Kf

k=1 d
f
k

(6)

The global IRIS value for the plant is defined as
the maximum value among all the F production
processes:

IRIS = max
f

IRISf (7)

To justify Eq. 7, on the one hand we can notice
that from the reliabilty modeling perspective, the
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F processes are logically combined through an
OR gate. According to Levitin and Lisnianski
(1998), the score of an OR gate can be estimated
as the maximum of the scores of its inputs (see
also Compare et al. (2018)). On the other hand,
Eq. 7 makes the risk communication clearer. For
example, if we consider the sum to combine the
risk scores of the F = 4 processes of the plant
considered in the case study, then a risk index
IRIS = 7 can be associated to both IRISf =
2, f = 1, ..., 3, IRIS4 = 1, and IRISf = 1
f = 1, ..., 3, IRIS4 = 4. These are completely
different situations, the latter possibly requiring
the emergency escape from the plant.

5. CASE STUDY
The SAPIO test plant has F = 4 production pro-
cesses. The HAZOP provided K1 = 13, K2 = 3,
K3 = 13 and K4 = 4 TEs, whose probablities
have been estimated through the corresponding
FTs. These have been translated into BNs.
Figure 7 shows an example of BN automati-
cally built from the corresponding FT, containing
boolean variables, behavioral and non-sensored
barriers.

Fig. 7.: Bayesian Network for a Top Event of the
first production process

The MAVT approach has been used to estimate
the FR of two PSVs (Sections 3.3). Based on
interviews with experts, we got the scores in Table
8, equal for both valves. The importance weights
of the attributes of Figure 5 are reported in Table
9. The overall value of the PSV barriers reads:

VPSV = 0.6 · (0.5 · 50 + 0.25 · 95)+
0.4 · (0.6 · 90 + 0.4 · 90) = 78.75 (8)

Then, according to Table 2, ULF = 0.9 and
the PSV FR increases from the nominal value

λPSV,0 = 1.2 ·10−2 to λPSV = λPSV,0 ·ULF =
1.08 · 10−2. The CREAM procedure has been

Table 8.: Scores for the PSV valves

Attribute Value Score

Age 24 years 50
Technology Standard 90
Other technical evaluation Light degradation 95
Utilization level Lightly used 90
Maintenance history Standard 90

Table 9.: Weights assignment

Attribute L1 Weight Attributes L2 Weight

Barrier features 0.6 Age 0.5
Technology 0.25
Other eval. 0.25

Barrier 0.6 Utilization level 0.6
past events Maint. history 0.4

applied to characterize the behavioral barrier re-
lated the operator response to the alarm. The
CPCs estimation did not yield a strategic control
mode, whereby the extended CREAM approach
was necessary.
A detailed Hierarchical Task Analysis has been
carried out and the cognitive activities linked to
each sub-task individuated. Those activities are,
then, connected with the elementary cognitive
functions, according to the COCOM principles.
The subsequent analysis of the phenotypes asso-
ciated to the elementary cognitive functions has
provided the CFP0 values (Table 4). The CII
has been evaluated according to Eq. 3 and, then,
used to estimate the CFP of each sub-task (Eq. 4),
as shown in Table 10. The sub-task dependence

Table 10.: CFP calculation for each sub-task

N. Task step Error CFP0 Weight CFP
mode factor

0.1 Identify and correctly O2 7E-2 0.282 1.974E-2
recognise the alarm

0.2.1 Analyse the process I1 2E-1 0.282 0.564E-1
related to the alarm

0.2.2 Select the required actions I2 1E-2 0.282 0.282E-2
to solve the alarm P2 1E-2 0.282 0.282E-2

0.3 Conduct the required actions I2 1E-2 0.282 0.282E-2
to solve the problem

is large. Then, the final task probability is the
maximum value among the CFPs found in Table
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10. This has led to Ptask = 0.0564, which is
almost 50 times larger than the value used in the
original HAZOP (Ptask,0 = 0.001).
Table 11, first row, shows the effect of the failure
of a Pressure Transmitter (PT) on the TE on Figure
7. The other rows show the update of the IRISf
indexes, f = 1, ..., F = 4, and the IRIS global
index upon the PT failure.

Table 11.: IRIS comparison between nominal and
faulty situation

Variable Nominal After PT fault

TE 2 posterior prob. 1E-9 1.1E-8
IRISpp,1 4.9841 5.0799
IRISpp,2 4.9656 4.9656
IRISpp,3 4.9623 4.9623
IRISpp,4 4.9793 4.9793
IRISglobal 4.9841 5.0799

6. CONCLUSIONS
We have presented the IRIS approach to track
risk as a control variable in safety-critical process
plants. This produces an overal risk index, which
simplifies risk comunication and aids decision
making. The next steps for the IRIS development
are the development of interfaces with Enterprise
Asset Management (EAM) softwares, which al-
low triggering alarms with Work Requests (WR)
and/or Work Orders (WO) for prescriptive main-
tenance.
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