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In the last years, extreme weather events, including heat waves, have caused extensive and long-lasting interruptions
in the electric power distribution systems of large urban areas. According to the current Performance-Based
Regulation (PBR) approaches for incentives aimed at strengthening utility performance, these interruptions have to
be quantitatively measured in network resilience metrics, rather than reliability metrics. In this distinction between
resilience and reliability, a clear definition of the extreme events is required. This, however, is still lacking. To
address the problem, in this work we propose a method to define heat waves, which relies on logistic regression
with elastic-net penalization to quantitatively associate environmental and operating conditions of the network to
significant increments of its failures. The methodology is validated by application to the medium voltage distribution
network of the city of Milano, Italy.
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1. Introduction
Reliability metrics such as System Average Inter-
ruption Duration Index (SAIDI), System Average
Interruption Frequency Index (SAIFI), Customer
Average Interruption Duration Index (CAIDI),
Customer Average Interruption Frequency Index
(CAIFI) and others, are widely used for measuring
the reliability of electrical power distribution net-
works and for demonstrating the capability of Dis-
tribution System Operators (DSOs) of coping with
power outages that occur under relatively normal

conditions of operation (Vugrin et al. (2017)).
In this respect, many improvements have been
done by DSOs which have progressively adopted
more advanced asset management models Bosisio
et al. (2019) as well as re-thought their networks
in terms of substations and cable reinforcements,
smart protections and Information and Communi-
cations Technology (ICT, Bosisio et al. (2019)).
In the last few years, a significant increase has
been recorded for extreme natural events, such
as hurricanes, heat waves, floodings. These have
caused extensive and long-lasting interruptions

Proceedings of the 30th European Safety and Reliability Conference and
the 15th Probabilistic Safety Assessment and Management Conference.
Edited by Piero Baraldi, Francesco Di Maio and Enrico Zio
Copyright c© 2020 by ESREL 2020 PSAM 15 Organizers. Published by Research Publishing, Singapore
ISBN: 981-973-0000-00-0 :: doi: 10.3850/981-973-0000-00-0 Articolo˙ESREL˙Ondate6 1



September 30, 2020 9:49 RPS/Trim Size: 221mm x 173mm for Proceedings/Edited Book Articolo˙ESREL˙Ondate6

2 Bellani et al.

of power service, which must be measured and
dealt with differently than with the network reli-
ability metrics, and the protection solutions and
strategies implemented for the reliability of the
distribution network. Indeed, in case of extreme
netural events, the network does not operate under
the design conditions, but rather ”beyond design”
(Zio (2007)).
To properly consider the interruptions caused in
Major Event Days (MEDs, Billinton and Acharya
(2006)), many national authorities, including the
italian ARERA, introduced the concept of re-
silience into their regulatory frameworks (e.g.,
Ciasca et al. (2017)).
Power grid resilience refers to the ability of
the network to continue operating and deliv-
ering power even when Low-Probability High-
Consequence (LPHC) disruptions (e.g., extreme
wheather events) occur. Then, designing and man-
aging for resilience requires ensuring the system
ability to absorb, recover, and adapt to disruptions
in case of their occurrence, minimizing their con-
sequences (Zio (2018)).
Formal definitions, metrics, and methods for an-
alyzing and operationalizing grid resilience are
currently being discussed and under develop-
ment (Hosseini et al. (2016)), also considering
interdependent critical infrastructures Liu et al.
(2019). For example, Jamborsalamati et al. (2018)
presents a framework for evaluating power grid re-
silience based on data of a real blackout happened
in south Australia in 2016. In Luo et al. (2018),
a method is proposed to evaluate the resilience of
distribution networks by focusing on the impact
of critical loads under extreme weather events,
whereas Zare-Bahramabadi et al. (2017) presents
a resilience-based framework for optimal switch
placement in distribution systems. Concerning the
hurricane natural hazard, a framework for evalu-
ating the power system resilience is presented in
Nateghi (2018), whereas a method to optimally
allocate generation resources is proposed in Gao
et al. (2017). Finally, Abdin et al. (2019) investi-
gate the impact of extreme heat waves and drought
events on the resilience of power grids fed by
renewable energy systems.
Yet, at present no grid resilience definition, metric
or method of evaluation have received universal
recognition and acceptance (Vugrin et al. (2017)).
Nonetheless, incentives are offered to DSOs by
the national authorities to develop plans for in-
creasing the resilience of their networks, accord-
ing to criteria defined at national level. Whichever
the national context, a clear definition of the ex-
treme events that can determine ”beyond design”
conditions is necessary for the definition of the in-
centives and the development of the plans, shifting
the focus from reliability to resilience. However,
this is still lacking.
In this work, we consider heat wave events, and
propose a data-driven framework for their quan-

titative definition. The same issue is tackled in
Zhang et al. (2019), with an unsupervised Gaus-
sian mixture model clustering approach (Reynolds
(2009); Rasmussen (2000)) applied to temperature
and relative humidity data collected in Torino,
Italy, over a period of 10 years. The framework
proposed in Zhang et al. (2019) suffers from the
following limitations:

• The unsupervised framework allows
characterizing the different climate con-
ditions, but these are not directly linked
to the failures occurred, i.e., information
related to the failures is not fully ex-
ploited.

• From the analysis of the results reported
in Zhang et al. (2019), it emerges that the
unsupervised framework is not capable
of properly isolating the heat wave pe-
riods. Rather, it separates the summer
period from the rest of the year: almost
35% of the yearly data is included in
the cluster with large temperature and
small humidity values. The proportion
of days associated to large temperature
values (more than one third) is too large
to be a proper indicator of heat waves. It
cannot be considered as an extreme event
(i.e., LPHC disruption).

• It does not take into account the the load-
ing conditions of the network, although
it is known that they strongly affect the
cable temperature and, thus, its failure
behavior.

To move forward on these issues, we resort to
supervised classification. To the best of the au-
thors’ knowledge, the approach that we propose is
different from those already available in the litera-
ture, as it systematically defines the heat wave by
creating a quantitative association between failure
data and environmental and operating conditions
of the network.
The paper is organized as follows. In Section
2, we briefly introduce the resilience issue in the
Italian context and particularly that of the city of
Milano. In Section 3, we describe the heat waves
and their impacts on power distribution networks.
In Section 4, we frame the heat wave definition
as a supervised classification problem and address
it by the logistic regression algorithm. In Section
5, the presented framework is applied to the dis-
tribution network of the city of Milano, Italy. In
Section 6, conclusions are drawn.

2. Context: resilience plans for the city
of Milano

The resolution of the Italian authority ARERA
668/2018/R/eel ”Incentives to increase the re-
silience of electric distribution networks” ARERA
(2018), asks DSOs to prepare a three-year plan for
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increasing the resilience of their grids. This plan
contains actions identified by the DSOs to limit
the impact of natural hazards on their distribution
networks.
The main natural hazards to be considered are:

• Heat waves and long periods of drought;
• Snowfalls of intensity such to cause the

formation of ice or snow sleeves (wet
snow) (Falabretti et al. (2018));

• Floodings due to intense rainfall;
• Wind storms and effects of salt pollution

nearby the seaside;
• Falls of trees on overhead lines.

In this work, we consider the distribution net-
work of Milano, which consists of about 600
Medium Voltage (MV) feeders at 23 kV and about
880’000 Low Voltage (LV) customers served by
more than 6’000 MV/LV substations. This net-
work is meshed so as to fulfill the N-1 reliability
criterion: if any edge fails or is shut down, the
operational layout of the network can be rapidly
changed to guarantee the supply to the interrupted
customers through another feeder.
In the specific case of the DSO of Milano
UNARETI (2020), the main natural hazard to
be considered to prepare the resilience plan is
the heat waves, which are estimated to have af-
fected 1 million people in the last 10 years. For
comparison, flooding have affected ”only” 70’000
customers in the same period. Moreover, in the
forthcoming years climate change is expected to
make heat waves more intense and more frequent
than before.

3. Effect of heat waves on distribution
networks

The occurrence of extremely hot weather condi-
tions (heat waves) results in both the reduction
of the heat transfer from cables to soil and the
increase of power demand because of massive and
simultaneous use of air conditioning. Due to ther-
mal inertia, when these conditions last for some
days, the network cables reach high temperatures
(even 30◦C larger than in the winter season), with
consequent heavy thermal stresses causing multi-
ple failures.
This leads the network to operate beyond the N-1
reliability design criterion, significantly challeng-
ing the network operability and possibly leading
to long power outages affecting a non-negligible
number of customers. For example, Figure 1
shows the case in which a multiple faults scenario
causes a long interruption, because of no possibil-
ity of restoration from another feeder. We assume
that the first failure occurs on vertex D, i.e., the
first part of the feeder. This is in agreement with
the experience that failures are more likely to oc-
cur on these parts of the grid, loaded by the whole
power delivered by the feeder. In case of outage in

D, the power has to come from an alternative path:
the first section of the feeder from vertex B to
vertex A has now to carry the whole power of the
subnetwork highlighted in red. If a second failure
occurs on the most loaded part of the network,
i.e., close to B, all the MV/LV substations in red
remain unsupplied till one of the two paths is fixed
by field operators. This situation is critical in the
case of underground cables because the time to
find and repair the outage can last up to 12 hours.

Fig. 1.: Simultaneous fault and MV/LV affected
by power outage

Fig. 2.: Five-year recorded failure data repartition
on the distribution network of Milano, Italy

On the other hand, MV feeders are the part
of the distribution network in Milano most af-
fected by failures (Figure 2): almost 80% the
recorded failures affect these edges, whereas only
a few faults are experienced by HV/MV substa-
tions (e.g. short-circuit on bus-bars, triggering of
transformer protection devices) or the LV distribu-
tion network.
Based on these considerations, the resilience anal-
ysis is focused on the identification of the weakest
MV feeders, which in case of heat waves are
likely to produce a double-failure event as that
schematized in Figure 1.
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4. Logistic Regression for the
identification of heat waves

We consider heat waves as those periods in which
the weather and operating conditions of the net-
work are such to determine trends of failure oc-
currence and intensity statistically different from
those of other periods, which are considered of
normal failure behavior. To translate this intuitive
concept into a quantitative definition, we relate the
number of occurred failures to weather conditions
and network loads. Specifically, we consider the
following data, limited to M days of the period
May-September and recorded for Y years:

• Total daily load of the electricity net-
work. In the case of Milano, these are
sampled every 15 minutes from the High
Voltage - MV transformers.

• Temperature and relative humidity. For
the Milano case study, these data are
collected from weather stations every 10
minutes.

• Failure data. These are relevant to cables
and joints, only (i.e., we do not consider
substation failures, as these are typically
not associated with heat waves). Yet, we
consider only the failures whose causes
have been ascertained to not be asso-
ciated with others hazards (e.g., floods,
ice hoses, etc.). We define φ(t) as the
variable which counts the number of si-
multaneous failures at time t. In words,
φ(t) can be seen as a sum of dirac’s-
delta functions. The data encode the
timestamps of the failures.

We define the heat-wave period of S days in which
more than F failures occur. F ∈ [Fmin, Fmax]
is the discriminating threshold to be identified for
distinguishing between normal and heat weave
conditions with respect to failure occurrence. The
values Fmin and Fmax are selected by an Inter
Quartile Range (IQR)-based outlier detection pro-
cedure (Schwertman et al. (2004)), setting two
different thresholds (e.g., 3-rd quartile + 1.5·IQR
and 3-rd quartile + 4 · IQR).
The samples of Y years recordings are appended
one after the other, so that the complete dataset
includes D =

⌊
M
S

⌋
· Y samples, where b�c

denotes the integer part of �. The timestamps of
the S-length windows are given by Eq. 1, where
ts,y identifies the date of the s-th sample of year
y ∈ {1, ..., Y }, and t0,y is pre-fixed for all the
years considered. Notice that for simplicity, in Eq.
1 we assume that M

S >
⌊
M
S

⌋
.

Formally, label yd = 1 identifies the heat wave in
the dataset as the S days corresponding to period
Td = [td − S, td] in which at least F failures have
occurred, d ∈ {1, . . . , D}; yd = 0 is the label
assigned to the opposite case.

To identify the conditions that define a heat
wave, we extract I features from the load, tem-
perature and humidity data, including maximum,
minimum, average, standard deviation, skewness
and kurtosis, each calculated on W different time
windows (i.e., 3 days, 5 days, 7 days, 10 days,
15 days, 20 days,...). These feature values are
arranged in vector zd ∈ RI·W , d ∈ {1, . . . , D}.
We then build a classifier function ŷ = f(z)
mapping the generic vector of environmental and
operating condition features z, onto the indicator
of heat wave occurrence.
For supervised classification, we rely on a bi-
nary logistic regression classifier with elastic-net
penalties (Zou and Hastie (2005)) to automatically
select the features of interest among the I · W
considered.
In further details, the logistic regression problem
reads as Eqs. 3-6. Logistic regression (Eq. 3)
provides the probability for the prediction to be
equal to 1, depending on the feature values. Once
trained, we can set prediction ŷ = 1 if and only
if pβ(z) ≥ 0.5. This probability value can be
regarded as a degree of confidence in our predic-
tion ŷ, in this case beyond coin-flipping random
prediction.
With respect to Eq. 5, we have to consider that
when building a classifier of heat waves, two is-
sues must be taken in mind:

• The two classes are unbalanced: the
heat wave periods are far fewer than the
normal ones, i.e.

∑D
d=1(1 − yd) >>∑D

d=1(yd). This implies that consider-
ing classificator accuracy as loss function
may lead the classifier to not properly
identify the class of interest yd = 1.

• To be conservative, it is more impor-
tant to limit the number of False Neg-
atives (FNs, i.e., observations at d ∈
{1, . . . , D} for which yd = 1 and
ŷd = 0) than the number of False Pos-
itives (FPs, i.e., observations at d ∈
{1, . . . , D} for which yd = 0 and ŷd =
1). Indeed, it is preferable to report the
conditions in which there is a risk of an
anomalous number of faults, even if it
is not true that the anomalous ”wave” of
faults occurs, rather than not triggering
alarms when environmental risk is high.
This is in agreement with our definition
of heat-waves: even if the considered
dataset experienced multiple periods of
hot environmental conditions, these do
not necessarily imply large numbers of
failure occurrences.

To address both issues, in Eq. 5 we impose in the
training phase that the weight of the FNs error is
E = 20 times that associated with the FP error.
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td = ts,y + S s = (d− 1) mod

⌊
M

S

⌋
, y =

⌊
d · S
M

⌋
+ 1, d = 1, ..., D (1)

Coefficients λ1 and λ2 of the `1 and `2 penal-
ization values (Eq. 4) are chosen by N− fold
cross-validation combined with threshold F opti-
mization. That is, the available dataset F is par-
titioned into N folds containing periods of equal
time durations. Set Fn ⊂ {1, ..., D} contains the
D =

⌊
M
S

⌋
indexes of the data in the n-th fold, n =

1, ..., N . We solve the N classification problems
Cn, n = 1, ..., N , by training the algorithm on
N−1 folds, containing theD =

⌊
M
S

⌋
·(Y−1) data

[zd, yd] such that d ∈ {1, ..., D} \ Fn and testing
the accuracy of the classification on data [zd, yd],
d ∈ Fn. The procedure is repeated on all N folds.
Finally, we select the penalization parameters, the
threshold F ∗ and β∗n of the classification problem
with the laregest Balanced Accuracy (BA):

BA(Cn) =

∑D
d=1 yd·ŷd∑D

d=1 yd
+

∑D
d=1(1−yd)·(1−ŷd)∑D

d=1(1−yd)

2
(2)

The optimized parameters β∗ characterize the
relative importance of the various features, i.e.,
β∗i , i ∈ {1, . . . , I ·W} represents the contribution
of feature zd,i, d ∈ {1, . . . , D} to defining output
ŷd. Notice that the penalization parameters λ1 and
λ2 may set some coefficients to 0. This allows
performing feature selection directly in the train-
ing phase: β∗i = 0 indicates that feature zd,i has
no significant impact on ŷd, d ∈ {1, . . . , D}, i ∈
{1, . . . , I ·W}.
Notice also that the optimization of F entails that
the heat wave is defined by the set of environmen-
tal and operating conditions, which allows fixing
a threshold on the number of failures that best
distinguishes the heat wave conditions from the
normal ones.
Finally, the choice of relying on logistic regres-
sion rather than on other supervised classification
algorithms is twofold. On the one hand, logistic
regression with penalization does not suffer from
the curse of dimensionality like other algorithms
(e.g., K-nearest-neighbour Johnson et al. (2002))
and generally provides good classification results
and features selection when trained with a large
number of features. On the other hand, unlike
Support Vector Machines Schlkopf et al. (2018),
Random Forests Svetnik et al. (2003), Neural Net-
works Nielsen (2015), it has a faster training phase
and provides easy-to-interpret results for experts.

5. Results
We have considered M = 153 and Y = 5. For
cross validation,N = 5, with each fold containing
the data of the same year.
Figure 3 reports the cumulative failures over S =
3 days (i.e., D = Y ·M

S = 255) on the distribution
network of Milano, together with some features
selected from the I ·W = 144 features of temper-
ature, load and relative humidity data.
For both confidentiality and visualization, features
and failures have been rescaled. Thus, the y-axis is
quantitatively meaningless and we can only infer
the relationships among these variables. From
Figure 3, we can see that there is a strong cor-
relation between the failure data and the environ-
mental and operating conditions, especially the
maximum load over three days: the periods in
2015 and 2019 with the largest numbers of failures
are in perfect correspondence with the peaks of
load. There is a positive correlation between the
number of failures and the load and temperature
data, whereas the correlation is negative between
the failures and the relative humidity; smaller
values of humidity generally corresponds to fewer
rainy days in the considered period.

The 10 features selected by the best setting
of penalized logistic regression (i.e., leading to
largest BA (Eq. 2) over the cross-validation and
threshold-F possible combinations) are shown in
Figure 4: the y-axis reports the coefficient β∗i for
each feature. Eight features (i.e., skewness of
humidity in 10 days, standard deviation of load
over 3, 5, 7 days, standard deviation of tempera-
ture over 20 days, mean of load over 3, 5 days and
maximum load over 3 days) have a positive value
of the associated coefficient, which indicates that
an increase in one of these features results a larger
probability of heat wave condition. The remaining
two features (i.e., maximum of humidity over 7
days and skewness of temperature over 5 days)
have negative coefficients, which indicates that an
increase in their value decreases the probability
of having a heat wave. As already pointed out,
a small value of maximum relative humidity over
7 days is generally associated to a sunny week; the
skewness of the temperature is an indicator of the
presence of sudden steps in the temperature value.
Notice that the negative coefficient sign indicates
that there is a larger chance of heat wave when, in
a time window, there is a small proportion of mea-
surements with small temperature values (negative
skewness). The ten features selected seem in
accordance with the literature (e.g., Volodin and
Yurova (2013)). With respect to Zhang et al.
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P(y = 1|z) = pβ(z) =
1

1 + e−β·z
(3)

β∗n = argmin
β∈RI·W

1

D

D∑
d=1

c(zd, yd) +
λ1
I ·W

I·W∑
i=1

|βn,i|+
λ2

2 · I ·W

I·W∑
i=1

β2
n,i (4)

c(zd, yd) = −
E

E + 1
· yd · log(pβ(zd))−

1

E + 1
· (1− yd) · log(1− pβ(zd)) (5)

yd = 1 ⇐⇒
∫ td

td−1

φ(t)dt > F ∗ (6)

2015-07 2016-01 2016-07 2017-01 2017-07 2018-01 2018-07 2019-01 2019-07
0

1

2

3

4

5

6

7

8 FAILURE
LOAD 3D MAX
LOAD 3D MEAN
TEMP 3D MEAN
TEMP 3D MAX
HUMID 5D MAX

Fig. 3.: Cumulative failure over 3 days (continuous line) and some features extracted from temperature,
load and humidity.

(2019), it emerges that:

• In both approaches, large temperature
values and small humidity values are
proper indicators of the heat conditions.

• The features related to the load, which
have not been considered in Zhang et al.
(2019), are those which mostly affect the
number of failures (6 out of 10), as the
load directly affects the thermal stress on
the cables.

• Some features are not related to the ab-
solute value of the environmental and
operational conditions; rather, they are
related to the presence of sudden changes
(e.g., skewness of temperature) or total
variation (e.g., standard deviation of load
and temperature).

Finally notice that since the features have been
normalized by z-score Johnson et al. (2002), the
values of the coefficients can be somehow inter-

preted as the relative importance of the features.
The 5− fold cross-validation performance of

the algorithm is reported in Table 1, where for
each year (row) we report the total numbers of
True Positives (TPs), True Negatives (TNs), FNs
and FPs and the corresponding Rates TPR =

TP
TP+FN , TNR = TN

TN+FP , FNR = FN
TP+FN

and FPR = FP
FP+TN (columns), for all the 3−

day periods considered. From the analysis of the
Table, we can see that there are only nine periods
(sum of columns 1 and 3) in which more than F
failures have been experienced (for confidential-
ity reasons, we cannot provide the value of F ).
Eigth out of these nine periods have been properly
identified by the algorithm, the only exception
being in year 2016, where the abnormal peak of
failure does not seem related to the environmental
conditions: from Figure 3, we can see that the
peak of failures occurs in a period in which there
is a relatively small value of the load. Despite
the apparently large number of FPs (columns 3
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Fig. 4.: Value of the coefficient β∗i for the 10 features selected by the elastic-net logistic regression.
When we report only the time window in the x-axis, we refer to a feature extracted from the load (e.g.,
3 mean stands for mean load over 3 days).

and 7), the total number of days considered by the
algorithm as heat waves (ŷd = 1, sum of columns
1 and 3) is in accordance with the environmental
conditions of Milano: years 2015 and 2019 (11
and 8 heat wave periods, respectively) have been
among the hottest summers ever ARPA (2020).
Moreover, 2015 is characterized by many temper-
ature fluctuations, which are considered risky by
the skewness of temperature feature. On the other
hand, 2016 has been one of the few years in the
third millennium with a summer not characterized
by extremely hot days ARPA (2020) and the algo-
rithm recognized only 4 heat wave periods.
With respect to the FP metric, we can also see
that in spite of the large number of heat waves
identified by the algorithm in 2017 (7, column 3),
there are no days with peaks of failures, although
the total number of failures occurred in 2017 is
far larger than that in 2016 (Figure 3). This is in
agreement with the fact that the heat wave does
not necessarily provide an abnormal number of
failures, but only increases their probability.
Finally notice that the total number of periods
with heat waves identified by the algorithm in the
considered 5 years amounts to 35 (sum of columns
1 and 2), with a total of S · 35 = 105 days of heat
wave in 5 years. Very roughly, we can estimate
that the average frequency of extreme hot weather
events is 21 days/year.

6. Conclusions
In this work, we have proposed a method to define
the heat waves bringing large risk of multiple
failures that strongly challenge the resilience of
the network. We have proposed a supervised clas-
sification algorithm based on logistic regression
with elastic-net penalty to relate the temperature,
load and humidity data to the heat wave condition.
The methodology has been applied to the weather,
load and failure data of the city of Milano. The
good cross-validation performance has shown that

the selected features properly identify the heat
wave conditions. The features are easy to interpret
and in accordance with the experts’ knowledge.
Future research work will exploit the proposed
framework for a proper definition of network re-
silience.
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