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Abstract

In this work, Reinforcement Learning (RL) is used for managing operation and maintenance of power
grids equipped with Prognostic and Health Management (PHM) capabilities, which allow tracking
the health state of the grid components. RL exploits this information to select optimal state-action-
reward trajectories maximising the expected profit by selecting proper operation and maintenance
actions on the grid components. A scaled down cost study is solved for a power grid, and strengths
and weaknesses of the framework discussed.
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1 Introduction
Modern power grids are complex systems, including many highly interconnected components. Maximising
the grid productivity while assuring a safe and reliable delivery of power is of uttermost importance for
grid operators. This requires developing robust decision-making frameworks, which give account to both
the complexity of the asset and the uncertainties on its operational conditions, component degradation
and failure behaviors, external environment, etc.
Nowadays, the grid management issue is further challenged by the possibility of equipping grid elements
with Prognostics and Health Management (PHM) capabilities, which allow tracking the health state
evolution. This information can be exploited by grid operators to further increase the profitability of
their assets [1–6].
Reinforcement Learning (RL) [7, 8] has been used in the last decades to solve a variety of realistic control
and decision-making issues in the presence of uncertainty, including power grid management. In the
RL paradigm, a controller (i.e. the decision maker) interacts with the environment (e.g. the grid) by
observing states, collecting rewards and selecting actions to maximise the future reward. The state-
action-reward trajectories [9] can be gathered from direct interaction with a real system (e.g. [10]), or
from a realistic simulator of the environment [7], also encoding the aleatory uncertainties in the system
future behavior. This makes RL suitable to power grid management optimization, as it can cope with
both the complexity of the asset and the unavoidable uncertainties related to its operation.
In [6], an RL framework based on Q-learning is proposed to solve constrained load flow and reactive power
control problems in power grids. Kuznetsova et al. [5] develop an optimisation scheme for consumers
actions management in the microgrid contest and accounting for renewable volatility and environmental
uncertainty. In [9], a comparison between RL and a predictive control model is presented for a power
grid damping problem. In [4], the authors review recent advancements in intelligent control of micro
grids including few attempts using RL methods. However, none of the revised works employs RL to find
optimal combined Operation and Maintenance (O&M) policies for power grids with degrading elements.
We present an RL framework to support O&M decisions for power grids equipped with PHM systems,
which seeks for the settings of the generator power outputs and the scheduling of preventive maintenance
actions that maximize the grid load balance and expected profit over an infinite time horizon, while
considering the uncertainty of renewable energy sources, power loads and component failure behaviors.
The rest of this paper is organized as follows: Section 2 presents the RL framework for optimal decision
making under uncertainty is described. A scaled-down power grid application is proposed in Section 3
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and results of the MDP and RL algorithm compared and discussed in Sections 4 and 5. Section 6 closes
the paper.

2 Modelling framework for optimal decision making under uncertainty
As anticipated above, developing a RL framework for power grid O&M management requires defining the
environment, the actions that the agent can take in every state of the environment, the state transitions
the actions lead to and, finally, the rewards associated to each state-action-transition step.

2.1 State space

Consider a power grid made up of elements C = {1, ..., N} physically and/or functionally interconnected,
according to the given grid structure. Similarly to [13], the features of the grid elements defining the
environment are the Nd degradation mechanisms affecting the degrading components d ∈ D ⊆ C and
the Np possible setting variables of power sources p ∈ P ⊆ C. For simplicity, we assume D = {1, ..., |D|}
and P = {|D|+ 1, ..., |D|+ |P |}.
The degradation processes evolve independently on each other according to a Markov process defining the
transition probability from state sdi (t) at time t to the next state sdi (t+ 1), where sdi (t) ∈ {1, ..., Sdi } ∀t,
d ∈ D, i = 1, ..., Nd. Similarly, for the power sources production, a Markov process defines the proba-
bilistic dynamic from spj (t) at time t to the next state spj (t+ 1), where spj (t) ∈ {1, ..., S

p
j } ∀t, p ∈ P, j =

1, ..., Np. Then, state vector S(t) at time t reads:

S(t) =
[
s11(t), s12(t) . . . s

|P |+|D|
N |P |+|D|

(t)
]

(1)

2.2 Actions

Actions can be performed on the grid components at each t, which define the system action vector as
follows:

a(t) =
[
a1(t) . . . ac(t) . . . aNc

(t)
]

(2)

were action ac(t) is selected for component c ∈ D∪P among a set of mutually exclusive actions ac ∈ Ac.
The action set Ac can include operational actions (e.g. closure of a valve, generator power ramp up, etc.)
and maintenance actions (e.g. preventive and corrective). Constraints can be defined for reducing Ac to
subset Ac(s

c
f ) ⊆ Ac. For example, Corrective Maintenance (CM), cannot be taken on As-Good-As-New

(AGAN) components and, similarly, it is mandatory action for failed components. In an optimistic view
[13], both Preventive Maintenance (PM) and CM actions are assumed to restore the AGAN state for
each component. An example of Markov process for a 4 degradation state component is presented in
Fig.1, where circle markers indicate maintenance actions and squared markers indicate other actions, i.e.
operational actions.

Operation Actions

Mainteinance Actions

 

AGAN

Deg1

Deg2

Fail

PM
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Figure 1: The Markov Decision Process associated to the health state of a degrading component.
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2.3 Transition probabilities

Transition probability matrices are associated to each component feature and action as follows:

Pc,f,a =


p1,1 p1,2 · · · p1,n
p2,1 p2,2 · · · p2,n

...
...

. . .
...

pn,1 pn,2 · · · pn,n


c,f,a

(3)

where pi,j represents the probability of transition from state i to state j of feature f of component c and
conditional to the action a in a time varying setting Pc,f (sj |a, si). The normalization propriety holds,

i.e.
n∑
j=1

pi,j = 1. In practice, element pi,j of the transition probability matrix Pc,f,a can be estimated as

the relative frequency of the measured component state to fall into the jth state at time t + 1 provided
that it was at the ith state in the previous time step when the action a was taken.

2.4 Rewards

Numerical rewards are case-specific and obtained by solving a physic-economic model of the system,
which evaluates how good is the transition from one state to another given that a is taken:

R = F (S(t+ 1) , a(t) , S(t)) ∈ R

2.5 Reinforcement Learning and SARSA(λ) method

Generally speaking, the goal of RL methods for optimal control is to find the optimal action-value function
Qπ∗(s, a), which is an indicator of future revenues when an action a is taken in state s, following the
optimal policy π∗:

Qπ∗(S, A) = Eπ

[ ∞∑
t=0

Rt|S(t), A(t)

]
(4)

Among the wide range of RL algorithms, we adopt SARSA(λ) which is a temporal difference learning
methods (i.e. it changes an earlier estimate of Q based on how it differs from a later estimate) employing
eligibility traces to carry out backups over n-steps and not just over one step [7]. Details on SARSA(λ)
are provided in the Appendix.

3 Case study
A scaled-down power grid case study is used to test the decision making framework. The grid includes
4 nodes and 5 cables for the power transmission, 2 non-controllable Renewable Energy Sources (RES)
are connected to 2 loads (nodes 2 and 3) and provide them electric power depending on random weather
conditions (Fig. 2). Two traditional generators installed at nodes 1 and 4 are controlled to minimize
power unbalances on the grid. We assume that the 2 controllable generators and links 1-2 and 1-3 are
affected by degradation and, thus, are equipped with PHM capabilities to inform the decision-maker on
their degradation states.

3.1 States and Actions

In the considered case study, we associate features to Nc = 8 components: the 2 loads, the 2 renewable
generators, 2 transmission lines and the 2 controllable generators, each of them is associated to only
1 feature (Nfc = 1 or NO = 1). For each load, we consider Nfsc = 3 states which are identified by
index IL ∈ { low, medium, high } power demand. Three states are associated to renewable power,
identified by the index IRES ∈ {low,medium, high} production, and 3 health states are associated to the
transmission links Hl ∈ {AGAN, degraded, failed}. Finally, 4 degradation states HG are considered for
the 2 generators in nodes 1 and 4 HG ∈ {AGAN, degraded, highly degraded, failed}. Then, the total
number of state vectors combinations is 11664. An example of system state vector at time t for is as
follows:

S(t) = {HG,1, HG,4, IL,2, IL,3, IRES,2, IRES,3, Hl,1−2, Hl,1−3}t

HG ∈ {1, 2, 3, 4}; Hl ∈ {1, 2, 3}

IL ∈ {1, 2, 3}; IRES ∈ {1, 2, 3}
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Figure 2: The power grid structure and the position of the 4 PHM capabilities, 2 renewable sources, 2 loads and
2 traditional generators.

where HG, Hl, IL and IRES are the degradation state (health indicator) of the generators and cables and
the indices identifying the load demand and renewable power production states, respectively.

The agent can operate both generators with the aim to maximise the system revenue by minimizing
unbalance between demand and production, while preserving the structural and functional integrity of
the system. Other actions can be performed by other agents on other components (e.g. transmission
lines), but being outside from the control domain of the first agent those are assumed included in the
environment. Five actions can be performed on each controllable generator, for a total of 25 combinations,
thus giving rise to a 291600 state-action pairs. The action set for each generator is the following:

Ag = {go2Pg1, go2Pg2, go2Pg3, PM,CM}

where the first 3 (operational) actions affect the power output of the generator, changing it to one of
the 3 allowed power levels. The last 2 actions are preventive and corrective maintenance actions. It is
assumed that CM has to be taken only for failed generators. Conversely, PM can be performed if the
generator is degraded but not when it is failed or AGAN. Furthermore, highly degraded generators (i.e.
HG = 3) are assumed degraded in their operational performance and only the lower power output can
be obtained ( only go2Pg1 is allowed). Tables 1-3 display the costs for each action and the corresponding
power output of the generator, the line electric parameters and the relation between state indices and
physical values for the RES and loads, respectively.

Table 1: The power output of the 2 generators in [MW]
associated to the 5 available actions and action costs in
monetary unit [m.u.].

Action: go2Pg1 go2Pg2 go2Pg3 PM CM

Pg,1 [MW] 40 50 100 0 0

Pg,4 [MW] 50 60 120 0 0

Ca,g [m.u.] 0 0 0 10 500

Table 2: The transmission lines proprieties.

From To Ampacity [A] Reactance

1 2 125 0.0845
1 3 135 0.0719
1 4 135 0.0507
2 4 115 0.2260
3 4 115 0.2260

Table 3: The generators outputs in MW and costs in monetary unit (m.u.) associated to the 5 available actions.

State Index 1 2 3

PRES,2 [MW] 0 20 30

PRES,3 [MW] 0 20 60

PL,2 [MW] 60 100 140

PL,3 [MW] 20 50 110
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3.2 Probabilistic Model
State transitions may occur from time t to the next time step t + 1 and are specifically defined for
each feature of each component. The 2 loads have identical transition probability matrices and also the
degradation of the transmission cables and generators is described by the same Markov process. Thus,
for ease of notation the node subscripts have been dropped. Each action a ∈ Ag is associated to a specific
transition probability matrix Pg,a describing the evolution of the generator health state conditioned by
its operative state or maintenance action. It can be noticed that probabilities associated to operational
actions, namely go2Pg1, go2Pg2, go2Pg3, affect differently the degradation of the component. For those
actions, the bottom row corresponding to the failed state has only zero entries. This reflects the fact
that operational actions cannot be taken for failed generators, but only CM is allowed. The transition
matrices for the 8 considered states are defined as follows:

Pg,go2Pg1 =


0.98 0.02 0 0

0 0.95 0.05 0
0 0 0.9 0.1
0 0 0 0

 Pg,go2Pg2 =


0.97 0.03 0 0

0 0.95 0.05 0
0 0 0.9 0.1
0 0 0 0



Pg,go2Pg3 =


0.95 0.04 0.01 0

0 0.95 0.04 0.01
0 0 0.97 0.03
0 0 0 0

 Pg,PM =


1 0 0 0

0.5 0 0.5 0
0.5 0 0 0.5
0 0 0 0



Pg,CM =


0 0 0 0
0 0 0 0
0 0 0 0

0.15 0 0 0.85



PRES,2 =

0.5 0.1 0.4
0.3 0.3 0.4
0.1 0.4 0.5

 PRES,3 =

0.5 0.2 0.3
0.4 0.4 0.2
0 0.5 0.5



PLoad =

0.4 0.3 0.3
0.3 0.3 0.4
0.2 0.4 0.4

 Plines =

0.9 0.08 0.02
0 0.97 0.03

0.1 0 0.9


3.3 Reward Model

When the agent performs an action at time t; the environment provides a reward and leads the system to
its state at time t+ 1. The reward is calculated as a sum of 4 different terms: (1) the cost of not serving
energy to the customers, (2) the revenue from selling electric power, (3) the cost of producing electric
power with traditional generators and (4) the cost associated to the performed actions. Mathematically,
the reward reads:

R(t) = +
∑
i

(Li − ENSi/∆t) · Cel +
∑
g

Pg · Cg −
∑
g

Ca,g −
∑
i

ENSi · CENS (5)

where ENSi is the energy not supplied to the node i (computed uby DC power flow [14]), CENS is the
cost of the energy not supplied, Li is the power demanded by node i, Cel is the price paid by the loads
for per-unit of electric power, Pg is the power produced by the generators, Cg is the cost of producing the
unit of power, Ca,g is the cost of the action a on the generator g and ∆t is the time difference between
the present and the next system state and it is assumed to be 1 h. The costs CENS , Cg and Cel are set
to 5, 4 and 0.145 monetary unit (m.u.) per-unit of energy or power, respectively.

4 Results and Discussions
4.1 MDP

The Bellman’s optimality equation has been solved using the value-iteration dynamic programming
method [7], which gives the optimal action-value function Qπ∗(s, a). This is summarise in Fig. 3,
where the curves provide a compact visualization of the distribution of Qπ∗(s, a) over the states for the
available 25 combinations of actions. Three clusters can be identified: on the far left, we find the set of
states from which CM on both generators is performed; being CM a costly action, this leads to a negative
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expectation of the discounted reward. The second cluster (C 2 ) corresponds to the 8 combination of
one CM and any other action on the not failed generator. The final cluster (C 1 ) of 16 combinations of
actions includes only PM and operational actions. If corrective maintenance is not performed, higher re-
wards are expected. Indeed, this is not always possible as generators can randomly transit to a failed state.

Both Generators
Corrective 

Mainteinance

One Generator
Corrective 

Mainteinance

No
Corrective 

Mainteinance

C 1C 2C 3

Figure 3: The Q(s, a) values displayed using ECDFs and the 3 clusters.

In Fig. 4 each sub-plot shows the the highest Qπ∗(s, a) expected discounted power grid return adopt-
ing the optimal policy, conditional to a specific degradation states of the generators and for increasing
electric load demand. It can be noticed that if the generators are both healthy or slightly degraded
(i.e. HG,1 +HG,2 equal 2, 3 or 4) an increment in the overall load demand leads to an increment in the
expected reward, due to the larger revenues from selling more electric energy to the customers. On the
other hand, if the generators are highly degraded or failed (i.e. HG,1 +HG,2 equal 7 or 8), an increment
in the load demand leads to a drop in the expected revenue. This is due to the increasing risk of load
curtailments and associated costs, i.e. cost of energy not supplied, and to impacting PM and CM actions
costs.

HG,1+HG,2=2 HG,1+HG,2=3 HG,1+HG,2=4 HG,1+HG,2=5

HG,1+HG,2=8HG,1+HG,2=7HG,1+HG,2=6

Figure 4: The maximum Q(s, a) (i.e. maximum expected discounted cumulative reward) for increasing total load
and different degrading condition of the generators.

4.2 SARSA(λ)

The SARSA(λ) algorithm (Algorithm 1 in the Appendix) has been used to provide an approximate solu-
tion to the MDP associated with the decision problem. The MDP is used to sample control trajectories
only, i.e. it provides a reward and a new state when an action and the old state is provided as input. The
SARSA method has been run changing parameters setting and accumulating eligibility traces. According
to the SARSA algorithm, an initial state has to be selected for the episodic loop, e.g. randomly. In this
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Table 4: The MDP Bellman’s optimality and the RL results compared with suboptimal policies.

MDP SARSA(0.5) Q50rnd Q100rnd

Qs1 [m.u.] 5719 5511 5555 4191 2028
Qs2 [m.u.] 2898 2577 2664 1297 -1229
Qs3 [m.u.] -1721 -1816 -1813 -2956 -4288
Act top1 100 % 48.8 % 49.1 % 62.1% 24.8%
Act top3 100 % 66.5 % 66.5 % 71.4% 43.1%
E[R(t)] [m.u.] 529.8 478.8 488.1 370.3 190.4
Ne - 5e5 5e5 - -
T - 50 250 - -

work, the initial system state S(t = 0) is sampled form S using a degradation-weighted probability mass

function fS(s) =
Nc∑
c=1

(Hc,s)/
Ns∑
s=1

[
Nc∑
c=1

(Hc,s)]. This sampling scheme is used to better estimate action-value

functions in rarely visited sates (i.e. low-probability states with many failed/highly degraded compo-
nents) and thus speed up the convergence of the SARSA method.Three representative states system
states s1 = [1, 1, 1, 1, 1, 1, 1, 1], s2 = [4, 1, 1, 1, 1, 1, 1, 1] and s3 = [4, 4, 3, 3, 3, 3, 3, 3] are analysed and com-
pared with the MDP reference solution. The 3 states have substantially different expected discounted
rewards, s1 has both generators in a AGAN state, s2 has on generator out of service whilst s3 has both
generators failed and have been selected from the 3 clusters C 1, C 2 and C 3, respectively (see Fig. 3).

4.3 Policies comparison

Table 4 shows the results for the MDP (Bellman’s optimality) and compares it with SARSA runs. Act
is defined as the portion of actions taken from the SARSA policy that are equal those taken using the
reference MDP optimal policy in the corresponding states; E[R(t)] is the expected non-discounted return,
independent from the initial state of the system. Trial and error testing showed that SARSA(0) policies
were outperformed by SARSA(0.5) results and, thus, two SARSA(λ) with λ = 0.5 have been further
investigated by setting the truncation windows T for each episode to 50 and 250 time steps, respectively.
A suboptimal policy Q50rnd was artificially obtained randomizing the action to be selected in 50 % of
the states. For Q100rnd all states have a random action associated with. It is interesting to notice
that SARSA(0.5) provide better policies (i.e. higher expected discounted and non-discounted returns)
compared to Q50rnd and Q100rnd. This is true even if Q50rnd has higher Act compared to the SARSA
policies, i.e. more than 60 % of the Q50rnd actions are equal to the MDP actions whilst less than 50
% for the SARSA. This points out that the optimal policy is very sensitive to some of the state-action
combinations and less to others. In other words, taking the wrong action in some states can lead to
a catastrophic drop in the expected return, whilst in other cases a sub-optimal action affects less the
expected revenue (e.g. making generator 1 produce power rather than generator 2 or vice versa).

Fig. 5 presents in detail 2 control trajectories with associated rewards and actions. MDP and SARSA
policies were used greedily to select actions and the results are displayed in the top and bottom figures,
respectively. Table 5 display the corresponding 10 vectors of grid state indices used to select the actions.
It is interesting to observe that by following the MDP policy, two PM actions were selected, first on
generator 1 (at the time step 2) and then on the generator installed on the node 4 (at the time step
3). The PM actions have been recommended even if the generators were in a AGAN state. This might
seem counter intuitive, but it can be explained considering the degradation model settings. A preventive
maintenance action taken in an AGAN degradation state will assure a transition to the AGAN state. In
this sense, the MDP policy is sometimes ready to accept a slightly lower revenue (due to PM costs) but
with the advantage of suspending the degradation process. Also, no additional costs are due to unbalances
between power load and production in those scenarios, even if one of the generators is unavailable due
to PM. This is due to the higher production from renewable sources in node 3 (at time step 2) and both
RES in nodes 2 and 3 (at time step 3). Similar argument is also valid for the SARSA control trajectory
at the time step 7.

5 Discussion on Limitation
While RL, like stochastic dynamic programming (DP), has in principle a very broad scope of application,
it has to face similar issues when the state-action spaces of the control problem are very large. In such
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Figure 5: Actions taken in 2 separate control trajectories using MDP and SARSA policies. Initial state s1 and
next states are randomly generated by the underlying probabilistic model (see Table 5).

Table 5: The state indices for the MDP control trajectory in Figure 5.

MDP

HG,1 HG,4 IL,2 IL,3 IRES,2 IRES,3 Hl,1−2 Hl,1−3

1 1 1 1 1 1 1 1

1 1 1 1 3 1 1 1

1 1 1 2 2 3 1 1

1 1 2 1 3 2 1 1

1 1 1 2 3 1 1 1

1 1 3 1 3 3 3 1

2 1 2 1 3 2 1 1

2 2 2 3 1 2 1 1

2 2 2 2 1 1 1 1

2 2 1 3 1 2 1 1

a case, RL has to be combined with regression techniques capable of interpolating over the state-action
space the data obtained from (relatively) few control trajectories [9]. Most of the research in this context
has focused on parametric function approximators, representing either some (state-action) value functions
or parameterized policies, together with some stochastic gradient descent algorithms (see e.g. [8] or [15]).
In real world environments, it is highly unlikely to have a complete description of the system state and
the Markov property just rarely holds. Partially observability is formally defined in Markov Decision
Processes to better describe the dynamics of system by acknowledging a lack of information of some of
the states in the system. As consequence, the issue of partial observability inevitably affects several RL
applications and just few works attempted to tackle the problem, e.g. [16]-[17]-[18]. To conclude, fur-
ther research has to be devoted to the development of enhanced RL algorithms, capable of dealing with
imprecise rewards (e.g. due to unavailable/unreliable models), partial observability and issues related to
scarcity of samples due to low-probability of specific state-action pairs.

6 Conclusion
A framework for optimal decision making of power grid systems affected by uncertain operations and
degradation mechanisms has been presented. The framework is based on Markov decision process theory
and Reinforcement Learning algorithms. Power grid models can include prognostic health management
devices which are used to inform the agent about the health state of the system components. This
information helps to select between operational and maintenance actions which have to be taken on the
system components. The SARSA(λ) method was used to solve a control problem for a scale down power
grid with renewable and PHM capabilities. The reinforcement learning results have been compared to the
reference Bellman’s optimality solution and are in good agreement, although inevitable approximation
errors have been observed. The framework proved to be flexible and effective in tackling a small but
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representative case study and future works will test its applicability to more realistic (larger) state-action
spaces. For this aim, artificial neural networks can be used for state-action space regression and this will
hopefully allow to scale up to larger grids. This necessary verification for a possible future applicability
of the method.
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Appendix
The SARSA(λ) algorithm starts initializing the action-value function Q and eligibility traces Z tables. Then, the
values for the learning rate α, the discount factor γ, the decay rate of the traces λ ∈ [0, 1] and the greediness factor
ε (or a policy π to be evaluated) are selected. After this initialization, the episodic loop starts with a random
sample (or selection) of an initial state st, then, an action at is selected based on the adopted policy, e.g. ε-greedy
or π(·|st). A ε-greedy policy consists of random actions, taken with probability ε, or greedy actions taken with
probability 1-ε (i.e. actions for which Q is maximised). Once the initial state-action pair is obtained, the episode
e is evaluated (i.e. a sequence of action-rewards-state-actions). Temporal difference errors δt at the time step t are
calculated, traces replaced or accumulated and Q updated.The episode terminates when a predefined truncation
horizon T is reached (i.e. maximum time length of the episode). The procedure is iterated until a predefined
number of events NE is obtained. The SARSA(0) is guaranteed to convergence to an optimal action-value function
for a Robbins-Monro sequence of step-sizes αt, for further details regarding stopping criteria and convergence
the reader is referred to [19]. RL approaches can tackle control problems with infinite optimisation horizon by
approximating the solution with a T-stage approach. In this sense, windows of T time steps are used to truncating
the time horizon, thus reducing the computational burdens [9]. The SARSA(λ) algorithm works as follows [7]:

Data: Set e = 1, NE , ε (or a policy π to be evaluated), α, γ, λ;
Initialize Q(s, a), for all s ∈ S and a ∈ A, arbitrarily (e.g. Q = 0);
Initialize traces Z(s, a) = 0, for all s ∈ S and a ∈ A;
while e < NE (Episodic Loop) do

Set t = 1;
Initialize starting state st e.g. randomly;
Select action at ∈ A(st) using policy derived from Q (e.g. ε-greedy) or π(·|st);
while t < T (run an episode) do

Take action at, observe st+1 and reward Rt;
Select action at+1 ∈ A(st+1) using policy derived from Q (e.g. ε-greedy) or π(·|st+1);
Compute temporal difference δt and update traces: δt = Rt + γQ(st+1, at+1)−Q(st, at);
Z(st, at) = Z(st, at) + 1 (accumulate traces) or;
Z(st, at) = 1 (replace traces);
Update Q and Z for each s and a: Q(s, a) = Q(s, a) + αδtZ(s, a);
Z(s, a) = γλZ(s, a);
Set t = t+ 1;

end
go to next episode e = e+ 1;

end

Algorithm 1: The SARSA(λ) algorithm adopting replacing or accumulating eligibility traces settings.
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