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Abstract

In this work, we propose a general modeling approach to estimate the life cycle
cost of a system equipped with Prognostics and Health Management (PHM) capa-
bilities, undergoing a Condition-Based Maintenance (CBM) policy. The approach
builds on the Markov Chain theoretical framework, with transition probabilities
linked to both PHM performance metrics of the literature and a novel metric. The
developed approach can be used to guide economic decisions about CBM develop-
ment, whichever the PHM algorithm is but provided that its performance metrics
are estimated. The model is validated through a case study concerning a mechanical
component of a train bogie affected by fatigue degradation, considering two different
prognostic algorithms: Particle Filtering and a Model-Based approach.

1 Introduction

One of the changes most spoken of in the Industry 4.0 paradigm (i.e., the fourth industrial
revolution [1, 2]) is digitalization, which brings with it the opportunity of using condi-
tion monitoring data recorded by Internet of Things (IoT) devices and made available
in the cloud (e.g., [3]) to detect abnormal states (i.e., recognize deviations from normal
operating conditions) in production processes, manufacturing equipment and products,
diagnose (i.e., characterize) the occurring abnormal states and prognose (i.e., predict)
the future behavior of the abnormal states. The set of detection, diagnostic and prognos-
tic tasks is often referred to as Prognostics and Health Management (PHM, [4, 5, 6, 7]).
The capability of performing these tasks with sufficient accuracy enables setting dynamic
maintenance approaches ([4, 8]), such as Condition-Based Maintenance (CBM), which
relies on condition monitoring to recognize and identify problems at an early stage, and
perform maintenance when the degradation level reaches a threshold, and Predictive
Maintenance (PM), which can be regarded as an extension of CBM where by mainte-
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nance is guided by the estimation of the component Remaining Useful Life (RUL).
Intuitively, CBM and PM yield efficient, just-in-time and just-right maintenance actions
(i.e., providing the right part to the right place at the right time), which maximize
production profits and minimize all costs and losses ([9]). However, a tempting miscon-
ception within the Industry 4.0 paradigm is that CBM and PM are always better than
scheduled or corrective maintenance policies. Indeed, this is not so: in spite of the intu-
itiveness of the benefit brought by PHM, in practice investments CBM and PM need to
be traded off against the corresponding benefits, for a fair comparison with alternative
(traditional) maintenance approaches [10]. Nonetheless, according to [10, 11] there are
very few reported papers on the economic analysis of PHM-equipped systems.
A few works (e.g., [12, 13, 14, 15, 16, 17]) evaluate the cost-benefit balance of PHM by
commonly used financial metrics, such as Return on Investment (RoI), Net Cash Flow,
Cumulative Cash Flow, Payback, Net Present Value and Internal Rate of Return. How-
ever, these works rely on simulation, rather than developing general analytical approaches
([11]).
In [18], the Technical Value (TV) metric is proposed for cost-benefit analysis of PHM,
which encodes the performance in detection, diagnostics and prognostics of critical fail-
ure modes and the costs associated with false alarms. However, TV relies on cost terms
that are difficult to estimate (e.g., the savings realized by isolating a fault in advance)
and assumes constant performance metrics, whereas, in practice, these depend on time.
Refined analytical methods are developed in [11] for the cost-benefit analysis of canary-
based PHM and in [19, 20] to maximize the system resilience, which is defined as a
combination of reliability and restoration, the latter being a function of the PHM char-
acteristics. In [21], a life-cycle maintenance cost analysis framework is developed, which
considers time-dependent false and missed alarms for fault diagnosis, whereas [22] and
[23] link time-variant metrics of literature ([24, 25]) to system reliability and availability,
respectively, for deriving the economic performance of PHM of different quality levels.
These analytical approaches, however, do not fully capture the dynamics of the CBM
context, where a decision on whether to stop the system must be taken every time the
PHM algorithms are run.
In this work, we propose a novel general modeling approach to estimate the Life Cycle
Cost (LCC) of a system equipped with PHM capabilities, undergoing a CBM policy. In
this setting, components are periodically checked, which often entails their unavailabil-
ity. Typical examples are the ultrasonic, thermography or borescope analysis performed
on a variety of mechanical systems and components (e.g., [26, 27]), as well as the other
Non Destructive Tests (NDTs) performed on aircraft structure in support to CBM ap-
proaches (e.g., [28, 29]). The proposed approach builds on the Markov Chain theoretical
framework, in which the transition probabilities are linked to performance metrics of the
PHM algorithms. In particular, we build on the False Positive (FP) and False Negative
(FN) metrics derived from [22, 24, 25], taking into account their dependence on time
and, then, we introduce the novel Cumulative First False Positive (CFFP) metric.
The developed framework allows estimating the costs of CBM, whichever the PHM al-
gorithm is, provided that its performance metrics are estimated. This is done through

2



analytical formulas, which avoid the computational issues related to Monte Carlo (MC)
simulation (i.e., error prone coding, computational time, etc). Moreover, the analytical
tool allows easily solving the practically important inverse problem: analyse the effects
of variations of the performances of the PHM algorithms on the estimated LCC, to as-
sess whether an improvement of the CBM approach is worth the investment (e.g., [30]).
Finding these results via MC simulation would require running the simulation model
for each possible variation. The model effectiveness is shown considering two different
PHM algorithms applied to a simulated case study concerning the fatigue degradation
mechanism affecting a mechanical component of a train bogie.
The remainder of the paper is organized as follows: Section 2 introduces the PHM frame-
work and formalizes the decision model. Section 3 illustrates the procedure to estimate
the performance metrics. Section 4 shows a simulated case study concerning the fa-
tigue degradation of a component of a train bogie. The results of the application of
the proposed methodology to the case study are discussed in Section 5. Section 6 uses
the methodology in a reverse way, mapping the improvement in the performance metrics
onto the benefit on LCC. Section 7 concludes the work.

2 Model Development

Consider a degrading component equipped with PHM capablities, whose stochastic fail-
ure time is T . The available PHM algorithms are run every τ units of time for updating
the estimate of the RUL. On this basis, a decision is taken about whether doing main-
tenance or not. According to the CBM perspective, we assume that the component
undergoes maintenance only when the estimated RUL is smaller than τ , i.e., when the
component health conditionsare deemed not good enough to survive till the next check.
The decision making process can be formalized through a Markov chain of n + 2 states
(Figure 1), where n =

⌊
Ω
τ

⌋
− 1 > 0 is the maximum number of RUL estimations per-

formed over the time horizon Ω, whereas b◦c indicates the integer part of its argument.
States s ∈ {1, . . . , n} indicate the number of PHM estimations performed since the com-
ponent installation, which did not lead to maintenance (i.e., RUL larger than τ). State
s = 0 refers to a new component put in operation, whereas state s = n + 1 represents
the event of component failure occurring between two consecutive checks.
For states s = 0, . . . , n− 1, there are 3 possible transitions (Figure 1):

• s → s + 1, which occurs when at check s + 1 the component is estimated able to
survive up to the next check, s+ 2.

• s → 0, This occurs when at the s-th check, the component is estimated able to
survive up to the next check s + 1, it does so indeed and, then, it is preventively
replaced (i.e., the component does not pass check s + 1). Notice that we assume
that when a new component is installed, it always passes check 0 (i.e., the new
component is deemed able to survive the first time interval).
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0 1 ... s s+1 ... n n+1

Figure 1: Markov model

• s→ n+ 1, which represents the failure before check s+ 1.

Two transitions are possible from state n: towards state s = 0, if the component survives
up to the end of the time horizon, and towards s = n+ 1, otherwise.
Finally, three transitions can occur from state s = n+ 1:

• n+ 1→ n+ 1: upon failure, the component is replaced, survives the check at t = 0
but fails before passing the check after the first time interval τ .

• n+ 1→ 0: the new component survives the first time interval τ , but does not pass
the corresponding check.

• n + 1 → 1: the new component survives the first time interval τ and passes the
check therein.

We link the transition probabilities to time-varying performance metrics of the PHM
algorithms, which are introduced in the next Section.

2.1 Time-variant PHM metrics

We indicate by ts = s · τ the time of the s− th check since the last component removal
and by Rel(ts) and T os , the component reliability and the failure time estimated by the
PHM system at time ts, respectively.
However, building on [22, 24, 25], we refer the metrics to the equivalent time λ ∈ [0, 1],
instead of the calendar time, as this makes the PHM algorithm performance independent
on the length of the component life, which pertains to its reliabilty. Accordingly, time ts
is indicated by λs ·T , which depends on the component life T , whereas the RUL predicted
at ts is indicated by Υλs .
FPλs(α) measures the average portion of times in which Υλs is smaller than (1−α)R∗λs ,
where R∗λs is the actual RUL at ts. Thus, this metric indicates how conservative the
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PHM predictions are at time tλs . Formally:

FPλs(α) = E[ΦPλs(α)], ΦPλs(α) =

{
1, if Υλs ≤ (1− α)×R∗λs
0, else

(1)

Specifically, we will consider the estimates fpλs(α) of FPλs(α), given by the empirical
average of ΦPλs(α) over the available number of test trials, achieved through an algorithm
test campaign.
Similarly to FP, the FN time-variant index reads ([22]):

FNλs = E[ΦNλs ], ΦNλs =

{
1, if R∗λs < τ < Υλs

0, else
(2)

Also for FN, we consider the estimates fnλs of FNλs , given by the empirical average of
ΦNλs over the available number of test trials.
Notice that when performing a PHM test, R∗ is exactly known at the end of every trial.
This value is used to estimate ΦPλs(α) and ΦNλS , as shown in Section 3.
We extend the definition in Eq. 1 to introduce the Cumulative First False Positive
(CFFP) time-variant index, which represents the probability that a component does not
survive up to the s− th check for a specific α, considering that it may have not survived
any of the previous checks. As detailed in Apppendix A, we consider only discrete values
of α, and the CFFP reads:

CFFPλs

(
α =

i− 1

i

)
=

s∑
j=0

FPλs−j

(
α =

i+ j − 1

i+ j

)
(3)

Also in this case, we will use the estimate cffpλs of CFFPλs , which reads

cffpλs

(
α =

i− 1

i

)
=

s∑
j=0

fpλs−j

(
α =

i+ j − 1

i+ j

)
(4)

2.2 Transition probabilities linked to PHM metrics

2.2.1 Transition s→ s+ 1, s ∈ {0, ..., n− 1}

This transition occurs when the RUL estimated at ts+1 is larger than τ , conditioned to
the fact that the component arrived at the s+ 1-th check:

ps→s+1 = P
(
T os+1 > ts+2, T > ts+1|T > ts, T

o
s > ts+1, T

o
s−1 > ts, ..., T

o
0 > t1

)
(5)

Theorem 1. The probability of transition s→ s+ 1, s ∈ {0, ..., n− 1}, reads:

ps→s+1 ≈
∑∞

i=0

(
1− CFFPλs+1

(
α = i−1

i

))
· (P (λs+1+i < 1)− P (λs+2+i < 1))∑∞

i=0

(
1− CFFPλs

(
α = i−1

i

))
· (P (λs+i < 1)− P (λs+1+i < 1))

(6)
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Proof. See Appendix A.1.

2.2.2 Transitions s→ n+ 1, s ∈ {0, ..., n− 1}

The probability of this event is that of failing before check s+ 1, conditional to the fact
that the component passed check s:

ps→n+1 = P

T < ts+1|T ≥ ts,
s⋂
j=0

T oj > tj+1

 (7)

Theorem 2. The probability of transition s→ n+ 1, s ∈ {0, ..., n− 1} is:

ps→n+1 =
FNλs · (P (λs < 1)− P (λs+1 < 1))∑∞

i=0

(
1− CFFPλs

(
α = i−1

i

))
· (P (λs+i < 1)− P (λs+1+i < 1))

(8)

Proof. See Appendix A.2.

2.2.3 Transitions s→ 0, s ∈ {0, ..., n− 1}

The probability of this event is the probability of estimating a component failure time
between checks s+ 1 and s+ 2, conditioned on the fact that the component reaches time
ts+1. This can be easily estimated as:

ps→0 = 1−
n+1∑
j=1

ps→j (9)

2.2.4 Transitions n→ n+ 1 and n→ 0

Theorem 3. The probability of having a transition from state n to state n+ 1 reads:

pn→n+1 = P

T < tn+1|T ≥ tn,
n−1⋂
j=0

T oj > tj+1

 (10)

=
FNλn · (P (λn < 1)− P (λn+1 < 1))∑∞

i=0

(
1− CFFPλn

(
α = i−1

i

))
· (P (λn+i < 1)− P (λn+1+i < 1))

Proof. The terms of Eq. 10 can be easily derived as for the previous Sections.

The other possible transition pn→0 is the complement to one of pn→n+1: pn→0 = 1 −
pn→n+1.
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2.2.5 Transitions from s = n+ 1

The probabilities for the transitions to states s = n+ 1 and s = 0 read:

pn+1→0 = P (T o1 ≤ t2, T > t1|T o0 > t1) (11)

pn+1→1 = P (T o1 > t2, T > t1|T o0 > t1) (12)

Eqs. 11 and 12 are special cases of Eq. 5. The other transition probability, pn+1→n+1, is
derived as their complement to 1.

2.3 Transition Matrix

We can finally build the transition matrix P, whose (s, j) entry represents the probability
of having performed the transition (s→ j) from state s to state j in a time step:

P =


p0→0 p0→1 ... p0→n+1

p1→0 p1→1 ... p1→n+1

... ... ... ...
pn+1→0 pn+1→1 ... pn+1→n+1

 (13)

To estimate the expected number of times that the component goes trough a specific
state within the time horizon Ω, we define vector VN whose s-th entry, VN(s), encodes
the expected number of visits to state s in N transitions. If we are interested in time
horizon Ω, then N = n+ 1.
We define πk as the row vector whose s-th entry, πk(s), is the probability of being in
state s at transition k. Then, the Markov property guarantees that [31]:

πk+1 = πk ·P πk+1 = π0 ·Pk (14)

If the component is new at the beginning of the operating life, then π0 = [1, 0, . . . , 0].
Finally, Ik is the vector whose s-th entry Ik(s) is 1 if state s is visited at transition k,
and 0 otherwise. Then,

VN = E

[
N∑
k=1

Ik

]
=

N∑
k=1

πk =
N∑
k=1

π0 ·Pk (15)

The expected LCC over time horizon Ω reads:

LCC = cp ·VN(0) + cf ·VN(n+ 1) + ct ·
n−1∑
s=1

VN(s) (16)

where cf is the expected cost of the single corrective action, cp is the expected cost of
the single preventive action (undergone when the component does not pass the test) and
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ct is the expected cost of the single measurement. VN(n+ 1) is the expected number of
components replaced upon failure, whereas VN(0) is the expected number of components
replaced upon test.
Notice that the LCC model in Eq. 16 is simplified in that it does not consider other
possible cost items such as those related to the logistics in support to maintenance (e.g.,
the unavailability of the spare parts, the warehouse costs, etc. [32]).

3 Performance metrics estimation

To estimate the performance metrics CFFPλs and FNλs , we build on [22] to develop
the following MC procedure:

1. Simulate the degradation mechanism to find the failure time T , the N prediction
instants at every τ time and the corresponding component degradation meausure.

2. At every prediction instant tλs , λs = ts
T , run the PHM algorithm to estimate the

predicted RUL Υλs . On this basis, use Eqs. 1 and 2 to calculate the values of
ΦPλ(α) and ΦNλs using Υλs and R∗λs = T − tλs . Notice that the values of ΦPλs(α)
at each inspection time are calculated for different values of α, to increase the
dataset for obtaining a less uncertain estimation of the values of CFFPλ for all the
possible values of α and λs.

3. Once steps 1-2 are performed for a large number Ns of simulations, sort the sim-
ulated failure times T1, ..., TNs . The empirical Complementary Comulative Distri-
bution Function (CCDF) gives an estimate of P (λs < 1) for every λs.

4. Consider the values of ΦNλs and ΦPλs(α) collected for different values of α from
the Ns simulations. Divide [0, 1) in I intervals of the same length [λi, λi+1), λ0 = 0,
λI = 1; I should be small enough that intervals [λi, λi+1) do not contain multiple
prediction instants of the same MC trial.

5. For each interval [λi, λi+1), compute the value of ΦPλs(α) and ΦNλs gathered at
the time instant λs ∈ [λi, λi+1); this provides the estimates fpλs , fnλs , which are
step-wise functions over the identified I intervals. We use the estimates fpλs for
the different values of α, to find thecorresponding values of cffpλs , according to
Eq. 4.

The estimates cffpλs and fnλs finally enter the transition probabilities derived in Section
2.2.

4 Case study and PHM algorithms

In this Section, we detail the case study and the PHM algorithms considered. In partic-
ular, the case study concerns the fatigue mechanism, which is specially relevant for train
bogie assembly (i.e., gearbox, suspension, wheels, axles and bearings [33, 34, 35, 36]).
These are periodically inspected to identify and measure the cracks. The bogie can be
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operated only if the expected crack length at the next scheduled inspection is smaller
than a safety threshold.
Notice that to prove the effectiveness of the proposed framework, we need to work on a
simulated case study, as this gives us full control to validate the results (see Appendix
B. Yet, estimating the performance metrics would require performing an intensive test
campaign, which is the focus of future research work.

4.1 Degradation model

Fatigue degradation of train bogie assembly is often described by the Paris-Erdogan (PE)
model ([33]), whose numerical values are taken from [37]:

1. The crack length xi reaches the first threshold, x = 1mm, according to the following
equation:

xi+1 = xi + a× eω1
i

where a = 0.003mm is the growth speed parameter and ω1
i ∼ N (−0.625, 1.5)

models the uncertainty in the speed values.

2. The crack length reaches the failure threshold x = 100mm according to the follow-
ing simplifying equation:

xi+1 = xi + C × eω2
i (η
√
xi)

n (17)

where C = 0.005[mm/cycle · 1/MPa ·mm0.5] and n = 1.3 are parameters related
to the component material properties and are determined by experimental tests;
η = 1[MPa] is a constant related to the characteristics of the load and the position
of the crack, and ω2

i ∼ N (0, 1) is used to describe the uncertainty in the crack
growth speed values. See [38] for a more detailed derivation of Eq. 17.

4.2 PHM algorithms

To validate the proposed approach, we consider two different prognostic algorithms:
Particle Filtering (PF, [39, 40]) and Model-Based Interpolation (MBI). We use two al-
gorithms to underline that the proposed method applies to any algorithm of known FP
and FN performance, independently on the algorithm characteristics.

4.2.1 Particle Filtering

PF is widely used for prognostics (e.g., [41, 42, 43]). In short, at any time instant,
PF estimates the degradation state of the component (i.e., its crack depth in our case
study) with a set of weighted "particles", which make up a probability mass function
(pmf). When a measure of the crack depth is acquired, the pmf is adjusted by a Bayesian
procedure, which increases the weights related to particles near the acquired data.
The PF algorithm chosen for our application is the same as that used in [8, 22]; it relies
on a simplified approach for predicting the evolution of the crack, which does not give
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full account to the uncertainty in the particle evolution ([8, 22]). More refined versions
of PF can be considered to improve the prognostic performance. However, this is out
of the scope of this work, which aims at developing a model to evaluate the economic
performance of a PHM-equipped component with given performance values fnλ and
ccfpλ, whichever the prognostic algorithm is.
Considering the maintenance policy settings, PF describes the uncertainty in the current
RUL by a probability distribution. We assume Υλ = 100(1 − β)th percentile of the
currently predicted RUL distribution. Notice that the smaller the value of the predicted
RUL percentile, the more risk-averse the decision. According to [22], we assume β = 40
and τ = 30, in arbitrary units.

4.2.2 Model-based interpolation

This algorithm makes use of the model of the degradation mechanism presented in Section
4.1 to analytically estimate the RUL of a component given a measure of its degradation.
Namely, the model is built by simulating a large number of trajectories of the evolution
of the crack length x of a component undergoing successive inspections. At any time
istant, t, the average crack length value reached at that time, xt, is estimated, whereas
the average failure time tf is derived by averaging over the times to reach xtf = 100mm.
The inverse of the interpolating curve provides the expected time tx to reach crack length
x. Finally, the expected RUL for any crack length x, is derived as tf − tx.
Figure 2 shows the estimated expected RUL for any value of crack length, simulating
100,000 trajectories.
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Figure 2: Expected RUL vs measured crack length x
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5 Results

Following the procedures presented in Section 3, we have simulated Ns = 30, 000 trajec-
tories of the fatigue degradation model described in Section 4.1, assuming Ω = 1000 and
τ = 30, in arbitraty time units.
Figure 3 shows the values of CFFP for the PF algorithm as a function of the normal-
ized time, for 20 different values of α. The largest values of FPλs(α) are achieved in
correspondence to the values of λ encoding the initial prediction instants. This is due to
one main characteristic of PF, whose accuracy and precision increase with the number of
inspection data collected: PF predictions are usually very dispersed at the beginning of
the degradation process, leading many simulated particles to be under the τ threshold.
Although there are techniques to avoid this behavior, the improvement of the algorithm
is not in the scope of this work.
The CFFPλ values of MBI are shown in Figure 4. These are smaller than those of the
PF, which is due to the higher effectiveness of MBI to avoid false positive predictions.
Moreover, the largest CFFP is associated to a value of α equal to 0, which corresponds
to the true positive probability and to the probability of obtaining a false positive when
τ < R∗ < 2 ∗ τ (i.e., i = 0 and i = 1 in Eq. 3). This indicates that the MBI algorithm
conservatively estimates the RUL when approaching the failure.
The values of CFFPλ are close to 0 for the other values of α > 0.5. This is due to the
fact that by construction, the average RUL predicted by MBI is never much smaller than
the actual.
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Figure 3: Values of CFFP at every ispection time, for 20 different values of α, considering
PF as PHM algoritm
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Figure 4: Values of CFFP at every ispection time, for 20 different values of α, considering
MBI as PHM algoritm.

Figure 5 compares the values of FNλ of MBI and PF. The FN metric for PF is equal to 0
for all the inspection times: no false positives have been experienced when using the PF
algorithm. This is coherent with the large false positive probability during the lifetime
of the component (Figure 3), which entails that the component is always replaced before
failure,and with the fact that RULs are conservatively estimated when β = 40. On the
other hand, the FNλ for the MBI algorithm displays values larger than 0 at the end of the
life time of the component, which is coherent with the adopted time normalization.
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Figure 5: FN values at every ispection time for MBI and PF.
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The obtained performance metrics are, then, used to compute the transition probabilities
entering P. (Figure 6). Notice that the small value of the transition probability p1→2 is
related to the large value of FPλs(α) at the second prediction instant. This also justifies
the sudden reduction at the second prediction instant of the probability of reaching the
states, which are shown in Figure 7. Formally, for each state s these probability values
are derived as

∏s
j=1 pj−1→j .

Figures 8 and 9 show the transition probabilities ps→s+1 and the probabilities of being
in each of the n + 1 states, respectively, for the MBI algorithm. The reduction of the
transition probabilities and, consequently, of the probabilities of being in each of the n+1
states after s = 20, corresponds to the period in which most of the trajectories fail. The
comparison of these transition probabilities with those obtained from PF demostrates
the longer component life guaranteed by the smaller false positive rate of MBI.
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Figure 6: Transition probabilities for PF
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Figure 8: Transition probabilities, for MBI
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Figure 9: Probability of reaching the different states, for MBI

The results of Figures 6-9 have been validated against a MC procedure (Appendix B).
Finally, Table 1 reports the expected LCC over time horizon Ω, for both PF and MBI
algorithms, by applying the equations derived in Section 2.3 when cf , cp and ct are set
to 100, 50 and 10, in arbitrary time unit, respectively, and the performance metrics
are estimated as described in Section 3. The MBI algorithm performs better than PF,
coherently with the analysis of the performance metrics CFFPλ and FNλ: the larger
values of CFFP of PF at the beginning of the operating life significantly increase the
corresponding LCC, whilst the better performance of PF with respect to MBI in terms
of FN are not enough to counterbalance the initial loss.

Table 1: LCC

Algorithm LCC

PF 509

MBI 355

6 PHM performace vs LCC

A main advantage of the proposed framework with respect to a traditional MC procedure
is the possibility of evaluating the effects on LCC of improvements of the performance
metrics (i.e., the improvement of the PHM algorithm capabilities). On this basis, we
can trade off the benefit on LCC of improving CBM with the effort required for the
development of the related PHM algorithms. In this respect, notice that we do not have
an estimation of the economic investment required to achieve a given improvement of the
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metrics. This investment is expected to depend on two main factors: on the one hand the
cost of the additional test campaign required to improve the accuracy of the estimates
of the perfromance metrics. On the other hand, the effort of data scientists, who have
to try to build several different algorithms with fine-tuned parameters, to select those
which outperform the others.This issue will be tackled in future work.
To analyse the effects of possible improvements of the PHM algorithm performance on
LCC, we must bear in mind that the economic performance of the PHM algorithm are
inversely proportional to the performance metrics FPλs(α) and FNλs when α > 0, i.e.,
the larger the value of FPλs(α), the larger the false positive probability and, thus, the
worse the performances (see Section 2.2). On the other hand, the benefits of PHM are
proportional to the values of FPλs(α = 0) (i.e., i = 0 in Eq. 3), which represent the true
positive probability.
Then, we trade off the reduction of LCC against a δ% improvement of the PHM algorithm
performance, corresponding to a δ% decrease of FPλs(α) or FNλs when α > 0, and to
a δ% increase of FPλs(α = 0). An improvement of δ′% of LCC refers to a reduction of
δ′% with respect to value prior to the variation of the performance metrics. For brevity,
when we analyse the improvements of the PHM algorithm at a specific inspection time s,
the metrics are improved for all the possible values of α only at that specific s. Similarly,
to assess the improvements of the PHM algorithm for a specific α value, the metrics are
improved for all the inspection times s only for that specific α.

6.1 PF algorithm

Figure 10 shows the LCC variation given the improvements of δ% = 50% of FPλs(α) of
PF, for different values of s. As expected, the largest reduction of LCC is obtained when
the performace is improved at s = 2, which corresponds to the test characterized by the
largest false positive probability (see Figure 3)
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Figure 10: LCC varations for the PF algorithm given the improvements of δ% = 50% of
FPλs(α), for different values of s.

Similarly, Figure 11 shows the LCC variations for the PF algorithm given the improve-
ments of δ% = 50% of FPλs(α), for different values of α. The largest improvements are
obtained for α in the range [0.93-0.96], which considering Eq. 3 corresponds to values of
i in the range [15-25]. This can be justified considering that most of the false positive
predictions occur at s = 2, when most of the actual RUL of the simulated trajectories
are in the interval [15τ -25τ ] (i.e, most of the simulated trajectories fail between the 17-th
and the 27-th inspections).
Figure 12 shows the varations of the LCC vs the improvements of δ% of FPλs(α) for
all s and α. As expected, the larger the improvement, the larger the benefit achieved.
Nonetheless, from the slope of the curve, which decreases over δ, we can see that the
investements in small improvements are more cost-efficient.

17



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

alpha improved

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

L
C

C
 i
m

p
ro

v
e

m
e

n
t 

(%
)

LCC improvement

Figure 11: LCC varations for the PF algorithm given the improvements of δ% = 50% of
FPλs(α), for different values of α.
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Figure 12: LCC varations for the PF algorithm given the improvements of δ% of FPλs(α),
for all s and α.

Finally, the quite large improvements of LCC are here justified by the relatively poor
performance of the considered PF algorithm. We remind that here the objective is not
to assess the PHM algorithms. Rather, it is to map the improvement in the algorithm
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metrics onto the LCC, whichever the algorithm is.

6.2 MBI algorithm

Figure 13 shows the variations of LCC given the improvements of δ% = 50% of FPλs(α)
for MBI algorithm. The largest improvement in LCC is obtained for s in the range [17-
27] (i.e., the interval in which most of the simulated trajectories fail). This is consistent
with the analysis of the performance metrics in Section 5, which highlights the decrease
of the MBI algorithm capabilities when approaching the failure time.
Similarly, Figure 14 shows the LCC variations given the improvements of δ% = 50% of
FPλs(α) of the PF algorithm, for different values of α. Notice that the largest improve-
ments are obtained for α = 0 (Figure 4), corresponding to the true positive probability
and to the probability of obtaining a FP when the actual RUL is between τ and 2τ .
The reduction of the LCC improvement for α = 0.5 corresponds to a reduction of false
positive probability when the actual RUL is between 2τ and 3τ . This leads to an increase
in the probability that a component undergoes the next test, which, however, is charac-
terized by a large FN probability. This results in an increase of the probability that a
component fails before replacement and, thus, of the overall maintenance costs.
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Figure 13: LCC varations for the MBI algorithm given the improvements of δ% = 50%
of FPλs(α), for different values of s.
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Figure 14: LCC varations for the MBI algorithm given the improvements of δ% = 50%
of FPλs(α), for different values of α.

Finally, Figure 15 shows the impact on the LCC of the improvements of δ% of CFFPλs(α)
for all s and α. Differently from Figure 12, the values of LCC improvement increase
almost linearly with the improvent in the performance.
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Figure 15: LCC varations for the PF algorithm given the improvements of δ% of FPλs(α)
for all s and α.
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7 Conclusions

The presented work proposes a novel general modelling framework for the estimation
of the LCC of a system undergoing a CBM policy. The approach builds on the Markov
Chain theoretical framework, and on the CFFP and FN metrics to characterize the PHM
performance. These metrics are used to compute the transition matrix P and, thus, the
expected LCC.
Tha approach allows evaluating the feasibility of planned improvements of the PHM
algorithms capabilities, considering their effects on LCC and, therefore, their economic
benefits.
The effectivness of the proposed approach has been shown by the application to two
different PHM algorithms for train bogie components. The results have shown the capa-
bility of the proposed method of providing i) an estimation of the transition probabilities
based on PHM algorithms performance metrics ii) an analytical tool to map the im-
provements of the performance metrics onto the LCC.
Notice that the results achieved for the Paris-Erdogan based case study cannot be con-
sidered general results, as they depend on the specific settings of the algorithms used and
the degradation model itself. In this respect, notice also that we did not optimize the pa-
rameters of both the considered algorithms to maximize their LCC.Future research work
will focus on the use of the proposed framework to further optimize the decision making
process required to employ PHM algorithms in real industrial applications. Moreover,
given predefined requirements and cost constraints, it can be used to identify the best
PHM algorithm (or the necessary improvements to a PHM algorithm) which maximizes
the benefits and minimizes the costs of the investment.
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A Transition probabilities: proofs

A.1 Proof of Theorem 1

Transition s→ s+ 1, s ∈ {0, ..., n− 1}, occurs when the RUL estimated at ts+1 is larger
than τ , conditioned to the fact that the component arrived at the s+ 1-th check:

ps→s+1 = P
(
T os+1 > ts+2, T > ts+1|T > ts, T

o
s > ts+1, T

o
s−1 > ts, ..., T

o
0 > t1

)
(18)

=
P
(⋂s+1

j=0 T
o
j > tj+1, T > ts+1

)
P
(
T > ts,

⋂s
j=0 T

o
j > tj+1

)
=
P
(⋂s+1

j=0 T
o
j > tj+1,

⋃∞
i=0(ts+1+i < T ≤ ts+2+i)

)
P
(
T > ts,

⋂s
j=0 T

o
j > tj+1

)
=

∑∞
i=0 P

(⋂s+1
j=0 T

o
j > tj+1, ts+1+i < T ≤ ts+2+i

)
· P (ts+1+i<T≤ts+2+i)
P (ts+1+i<T≤ts+2+i)

P
(⋂s

j=0 T
o
j > tj+1,

⋃∞
i=0 ts+i < T < ts+i+1

)
=

∑∞
i=0 P

(⋂s+1
j=0 T

o
j > tj+1|ts+1+i < T ≤ ts+2+i

)
· P (ts+1+i < T ≤ ts+2+i)∑∞

i=0 P
(⋂s

j=0 T
o
j > tj+1, ts+i < T ≤ ts+i+1

)
=

∑∞
i=0 P

(⋂s+1
j=0 T

o
j > tj+1|ts+1+i < T ≤ ts+2+i

)
· P (ts+1+i < T ≤ ts+2+i)∑∞

i=0 P
(⋂s

j=0 T
o
j > tj+1|ts+i < T ≤ ts+i+1

)
· P (ts+i < T < ts+i+1)

=

∑∞
i=0 P

(⋂s+1
j=0 T

o
j > tj+1|ts+1+i < T ≤ ts+2+i

)
· (Rel(ts+1+i)−Rel(ts+2+i))∑∞

i=0 P
(⋂s

j=0 T
o
j > tj+1|ts+i < T ≤ ts+i+1

)
· (Rel(ts+i)−Rel(ts+i+1))

To use this formula, we need to go deeper into its terms. With respect to Rel(ts+1+i)−
Rel(ts+2+i), we see that for each conditioning event ts+1+i < T ≤ ts+2+i, the equivalent
time of ts is ts

ts+2+i
≤ λs ≤ ts

ts+1+i
, and Rel(ts) = P (λs < 1). Thus, Rel(ts+1+i) −

Rel(ts+2+i) = P (λs+1+i < 1)−P (λs+2+i < 1). Similarly, at the denominator, Rel(ts+1)−
Rel(ts+1+i) = P (λs+i < 1)− P (λs+1+i < 1).
To estimate P

(⋂s
j=0 T

o
j > tj+1|ts+i < T ≤ ts+1+i

)
, i.e., the i-th addend of the sum at

the denominator, we first make additional manipulations:
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)
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j′=0

s∑
j′′=0

P
(
T oj′ ≤ tj′+1, T

o
j′′ ≤ tj′′+1|ts+i < T ≤ ts+1+i

)
− ...

− (−1)s+1P

 s⋂
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T oj ≤ tj+1|ts+i < T ≤ ts+1+i

 (19)

In the first equalities, we have used the De-Morgan’s laws, whereas in the last equality
we have applied the Bonferroni’s rule [44]. By considering that a component that does
not pass a check is replaced upon inspection, we can state that the events T o0 ≤ t1, T o1 ≤
t2, ..., T

o
s ≤ ts+1 are mutually exclusive. Thus, Eq. 19 simplifies:

P

 s⋂
j=0

T oj > tj+1|ts+i < T ≤ ts+1+i

 = 1−
s∑
j=0

P (T oj ≤ tj+1|ts+i < T ≤ ts+1+i) (20)

Now, consider that FPλs(α), i−1
i < α ≤ i

i+1 , represents the probability P (T os ≤ ts+1|ts+i <
T ≤ ts+1+i) of obtaining a false positive at the s − th time interval when the RUL is
between ts+i and ts+i+1. Namely, the conditioning event ts+i < T ≤ ts+1+i implies that
the actual RUL is within the blue shaded area in Figure 16. Assume that T ≈ ts+i, as in
Figure 16a (T cannot be equal to ts+i, as ts+i < T ≤ ts+1+i). Then, the actual RUL is
R∗λs ≈ i · τ . Notice that this value is the actual RUL value at the normalized prediction
time, whereas the normalized RUL value at the normalized prediction time would read
R∗λs ≈ i · τ/T . For simplicity, we use the former.
If τ ≤ (1− α)× i · τ , which implies α ≤ i·τ−τ

i·τ = i−1
i , then we have:

P (T os ≤ ts+1|T ≈ ts+i) = P (Υλs ≤ τ |T ≈ ts+i)

≤ P (Υλs ≤ (1− α)×R∗λs |R
∗
λs ≈ i · τ) = FPλs

(
α =

i− 1

i

)
(21)

Eq.21 entails that FPλs(
i−1
i ) is an overastimation of the probabilities of the PHM system

of triggering erroneous warnings.
Notice that when i = 1, P (T os ≤ ts+1|T ≈ ts+1) represents the true positive probability,
and Eq. 21 states that this is smaller than FP (0), which is the probability that the RUL
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is overestimated.
When i = 0, P (T os ≤ ts+1|T ≈ ts) represents the extreme situation in which the
system arrived at check time ts just before failure. We can still consider this situ-
ation as a true positive, whereby Eq. 21 states that its probablity is smaller than
FPλs(0). If we assume that T = ts+i+1 (i.e., the other extreme case of the condi-

(a) T ≈ ts+i (b) T = ts+i+1

Figure 16: Geometrical interpretation

tioning event ts+i < T ≤ ts+1+i, Figure 16b), then through the same reasoning we get
P (T os ≤ ts+1|T = ts+i+1) ≤ FPλs

(
i
i+1

)
.

Considering Eq. 1, the smaller the value of α, the larger the probability of false positive.
In this work, we adopt a risk averse approach and, therefore, we consider the overes-
timation of the probabilities of the PHM systems of committing errors as conservative
estimations. Thus, given that i−1

i ≤
i
i+1 , ∀i = 1, ...,∞, we conclude that a conservative

estimation of the probability P (T os ≤ ts+1|ts+i < T ≤ ts+1+i) is fpλs
(
i−1
i

)
, as this en-

tails larger stop probability values and lower probability of failure.
Based on these considerations and the CFFP definition in Eq. 3, we can write:

CFFPλs

(
α =

i− 1

i

)
=

s∑
j=0

FPλs−j

(
α =

i+ j − 1

i+ j

)
≥

s∑
j=0

P (T oj ≤ tj+1|ts+i < T ≤ ts+1+i)

(22)

In Eq. 22, we can easily recognize the sum appearing in Eq. 20. Therefore, Eq. 18
becomes:

ps→s+1 ≈
∑∞

i=0

(
1− CFFPλs+1

(
α = i−1

i

))
· (P (λs+1+i < 1)− P (λs+2+i < 1))∑∞

i=0

(
1− CFFPλs

(
α = i−1

i

))
· (P (λs+i < 1)− P (λs+1+i < 1))

(23)

With respect to Eq. 22, notice that given the s−th check and the corresponding FPλs(α),
to account for a previous check s′ = s− j, we derive the corresponding α′ = α − j. For
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example, assuming T = ts+i, the actual RUL is R∗λs = (i) · τ and the estimation of FP
is FPλs(α = i−1

i ). Accordingly, the actual RUL at the previous check s′ = s − j is

R∗λs′
= (i+ j) · τ and the corresponding estimation of FP is FPλs′

(
α = i+j−1

i+j

)
.

A.2 Proof of Theorem 2

The probability of transitions s→ n+ 1, s ∈ {0, ..., n− 1} is that of failing before check
s+ 1, conditional to the fact that the component passed check s:

ps→n+1 = P

T < ts+1|T ≥ ts,
s⋂
j=0

T oj > tj+1

 (24)

=
P
(⋂s

j=0 T
o
j > tj+1, ts ≤ T < ts+1

)
P
(
T ≥ ts,

⋂s
j=0 T

o
j > tj+1

)
=

P
(⋂s

j=0 T
o
j > tj+1|ts ≤ T < ts+1

)
· (Rel(ts)−Rel(ts+1))∑∞

i=0 P
(⋂s

j=0 T
o
j > tj+1|ts+i < T ≤ ts+i+1

)
· (Rel(ts+i)−Rel(ts+i+1))

The denominator can be derived from the previous Section, whereas for the estimation
of P

(⋂s
j=0 T

o
j > tj+1|ts < T ≤ ts+1

)
, we can see it as the FN at ts (Eq. 2). Then,

ps→n+1 =
FNλs · (P (λs < 1)− P (λs+1 < 1))∑∞

i=0

(
1− CFFPλs

(
α = i−1

i

))
· (P (λs+i < 1)− P (λs+1+i < 1))

(25)

B Model validation

To cross-validate the proposed approach, we consider the following MC procedure to
estimate the transition probabilites in matrix P:

1. Consider the n+2 states [0, 1, ..., s, s + 1, ..., n, n + 1] of the Markov Chain model
described in Section 2.

2. Simulate the degradation mechanism to find the failure time T , the N prediction
instants at every τ time and the corresponding component degradation meausure.

3. At every prediction instant ts, run the PHM algorithm to estimate the predicted
RUL. If Υs < τ , stop the simulation. Otherwise, enter state s+ 1 and continue the
simulation.

4. Once steps 2-3 are performed for a large number of times, for each prediction instant
ts, take the number Cs of simulations which pass the s− th test and the number of
times Csfn in which the s− th check is passed, but T occurs before the next check
(s+ 1)− th.
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5. Compute the state transition probabilities as follows:

ps→s+1 =
Cs+1

Cs
(26)

ps→n+1 =
Csfn
Cs

(27)

ps→0 = 1−
n+1∑
j=1

ps→j (28)

B.1 Results

Figure 17 and Figure 18 compare the transition probabilities ps→s+1 estimated consid-
ering the performance metrics CFFPλ and FNλ of PF (i.e., through the procedure in
Section 3), with those obtained through the MC procedure proposed in Section B, for
PF and MBI, respectively: these are in good agreement, the differences being due to by
the MC fluctuations and the fact that the proposed metrics offers an overestimation of
the false positive probabilities and of the true positive probabilities.
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Figure 17: Comparison between the transition probabilities estimated via the perfor-
mance metrics and the MC procedure, for PF.
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Figure 18: Comparison between the transition probabilities estimated via the perfor-
mance metrics and the MC procedure, for MBI.

Figures 19 and 20 compare the probabilities of being in each state considering the perfor-
mance metrics and the MC procedure, for the PF and the MBI algorithms, respectively.
The results are comparable, confirming the effectiveness of the proposed framework to
estimate the transition probabilities.
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Figure 19: Comparison between the probability of reaching the different states estimated
via the performance metrics and the MC procedure, for PF.
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Figure 20: Comparison between the probability of reaching the different states estimated
via the performance metrics and the MC procedure, for MBI.

Table 2 reports the expected LCC over time horizon Ω, both for the proposed framework
and the MC procedure, following the procedure proposed in Section 2.3 with same cost
parameter values: both for PF and MBI, the results are in good agreement with each
other.

Table 2: LCC

Method LCC by MBI LCC by PF

Proposed framework 509 355

MC procedure 493 356
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