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Abstract 

The objective of the present work is to develop a method for the identification of the degradation state of cutting 

tools (knives) used in the packaging industry. The main difficulties to be addressed are that i) only 

measurements of a physical quantity indirectly related to the knives degradation are available and ii) only the 

beginning and the end of operation of the knives are known, whereas no information is available on the 

component degradation state during its operation life. A method to identify the component degradation state 

is here proposed. First the general setting for extracting health indicators to measure the amount of knife 

degradation from a set of signals measured during operation is discussed. Then, an optimal subset of health 

indicators is selected based on monotonicity and trendability indexes. Finally, the optimal subset of health 

indicators is fed to a Fuzzy C-Means (FCM) clustering algorithm, which allows assessing the knife 

degradation state. The application of the proposed method to real condition monitoring knife data is shown to 

lead to satisfactory results. 
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1. INTRODUCTION 

Multi-state degradation modelling can be used to support maintenance strategies by offering a 

description of the degradation process based on the maintenance inspection practice, of assigning 

classes of degradation state to the inspected device. Multi-state modelling frameworks have been 

developed for membranes of pumps operating in Nuclear Power Plants (Baraldi et al., 2011), turbine 

nozzles for the Oil&Gas industry (Compare et al. 2016), liners of marine diesel engine cylinders 

(Giorgio et al, 2011), piping of nuclear power plants (Veeramany et al., 2011) (Cannarile et al, 2017). 

In this work, we present a method for on-line assessing the degradation state of knives installed on 

Tetra Pak® A3/Flex filling machines used to cut package material. We consider a use case in which 



we have available measurements of a physical quantity indirectly related to the knife degradation and 

we know the beginning and end of operation life of the knife, but we do not have any information on 

the component degradation state during its life. The method to identify the component degradation 

state is based on the following three steps: 

S1. Extraction of statistical and frequency-based features from the raw data; 

S2. Selection among the set of extracted features of an optimal subset of Health Indicators (HIs) 

for the identification of the component degradation; 

S3.  Unsupervised clustering of HI data in order to identify the component degradation state.  

The main novelty of our work lies in the strategy to select the optimal subset of HIs based on 

monotonicity and trendability indexes and in its application to knives used in the packaging industry. 

The paper is organized as follows: in Section 2, the general setting for HI development is proposed; 

in Section 3, Fuzzy C-Means (FCM) clustering for identifying the knife degradation state is discussed. 

The application of the methodology to Tetra Pak® A3/Flex filling data is described in Section 4, 

whereas in Section 5 conclusions are drawn.  

2. HEALTH INDICATORS 

In this Section, we describe the general setting for developing HIs capable to catch the degradation 

evolution of the monitored knives over time. Subsections 2.1, 2.2. and 2.3 present the three steps of 

the proposed procedure: feature extraction, trend extraction and feature selection, respectively. We 

assume to have available raw measurements registered during data acquisition sessions performed 

during the lives of 𝑁 identical knives, i.e., from their installation up to their replacement. The generic 

𝜏𝑡ℎ  data acquisition on the 𝑖𝑡ℎ knife provides the vector 𝒙𝑖(𝜏), 𝑖 = 1, . . , 𝑁; 𝜏 = 1, … , 𝑛𝑖 of the signal 

values collected during the knife cutting process with 𝑛𝑖 indicating the total number of data 

acquisition performed on the 𝑖𝑡ℎ knife before its replacement. Notice that during a single cut multiple 

acquisitions are typically performed, from the beginning of the cut until its end. 

2.1   Feature Extraction 

The development of health indicators from the raw measurements 𝒙𝑖(𝜏), 𝑖 = 1, . . , 𝑁, 𝜏 = 1, . . , 𝑛𝑖 , 

requires a first phase of feature extraction, where the raw measurements are preprocessed in order to 

reduce the dimensionality of the vector 𝒙𝑖(𝜏) and extract information relevant with respect to the 

component degradation process. In practice, from the raw measurement vector, which contain 

thousands of signal values, we extract 𝐹 different lumped features by considering statistical metrics 

(e.g., means, standard deviations, etc.) and analytics (e.g., derivatives, elongation, etc.), signal 



transforms in the frequency domain (e.g., Fourier Transform, Laplace Transform) and/or in the time-

frequency domain (e.g., Short Time Fourier Transforms (STFT) (Kaewkongka et al., 2003) and 

Wavelet Transform (WT) (Baraldi et al., 2016).  

 

Figure 1: Feature extraction procedure 

The raw vector 𝒙𝑖(𝜏), is thus, transformed into the vector 𝐹𝑓
𝑖(𝜏), 𝑓 = 1, . . , 𝐹 (see Figure 1). Since the 

obtained features are typically noisy, a further step of data preprocessing is performed by using 

Empirical Mode Decomposition (EMD) (Huang, 2000). The main idea behind the use of EMD is that 

a signal can be typically formed by fast oscillations superimposed to slow oscillations (Rilling & 

Flandrin, 2006). EMD is able to identify a local ‘low frequency’ component, that is referred to as 

local trend 𝑚𝐺[𝐹𝑓
𝑖](𝜏), and zero-mean oscillations or Intrinsic Mode Functions (IMFs) 𝑞𝑔[𝐹𝑓

𝑖](𝜏), 

allowing the decomposition of the signal 𝐹𝑓
𝑖 as follows: 

 

 𝐹𝑓
𝑖(𝜏) = ∑ 𝑞𝑔[𝐹𝑓

𝑖](𝜏) +  𝑚𝐺[𝐹𝑓
𝑖](𝜏)

𝐺

𝑔=1

 (1) 

 

Thus, EMD performs a multi-scale decomposition that is fully data-driven (model-free) and that can 

be applied to any oscillatory time series, including nonstationary ones and/or those generated by a 

nonlinear system (Huang & Wu, 2008). As an example, Figure 2 shows the application of EMD to a 

noisy nonstationary signal 𝐹𝑓
𝑖. The first IMF 𝑞1[𝐹𝑓

𝑖](𝜏) contains the details of 𝐹𝑓
𝑖, i.e., high-frequency 

content of the original signal, whereas the second IMF 𝑞2[𝐹𝑓
𝑖](𝜏) contains the approximimation of 

𝐹𝑓
𝑖, i.e., the low-frequency content of the original signal. 

 



 

 

Figure 2: EMD applied to signal 𝑭𝒇
𝒊 (𝝉) 

 

Notice that each time 𝜏 a new data is acquired, the local trend and IMFs are modified in the entire 

signal time domain [0, 𝜏), as shown in the example of Figure 3. 

 

Figure 3: Variations in the EMD trend when a new data is collected 

 

According to (Mosallam et al., 2014), variations of the resulting EMD trends can be informative with 

respect to the component degradation and can be quantified using different statistical indicators, such 

as the local trend mean value (𝑚𝑒𝑎𝑛), its standard deviation (𝑠𝑡𝑑) and the parameters of its linear 

polynomial fitting, i.e., the slope and the intercept, which will be referred to as 𝑎 and 𝑏, respectively.  

In practice, four potential health indexes are extracted from each feature: 

 

 
𝐻𝐼𝑓

𝑖(𝜏) = [𝐻𝐼𝑓,1
𝑖 (𝜏) 𝐻𝐼𝑓,2

𝑖 (𝜏) 𝐻𝐼𝑓,3
𝑖 (𝜏) 𝐻𝐼𝑓,4

𝑖 (𝜏)] = [𝑎𝑓
𝑖 (𝜏)  𝑏𝑓

𝑖 (𝜏) 𝑚𝑒𝑎𝑛𝑓
𝑖 (𝜏) 𝑠𝑡𝑑𝑓

𝑖 (𝜏) ]  

𝜏 = 2, … , 𝑛𝑖 
(2) 

 

Figure 4 shows the procedure for HIs development described in this Subsection. Notice that each time 

a new value of the feature 𝑓 is acquired, the EMD transform has to be applied, the trends extracted 

and the four potential HIs computed. 



 

 

Figure 4: Sketch of the procedure to extract trend features 

2.2 Feature Selection 

Feature selection is the process of selecting among several possible candidates a smaller subset of 

features which satisfy the user desiderata with respect to the specific application under investigation. 

In this work, we consider as possible candidates the 4 ∙ 𝐹 potential health indicators identified at the 

end of the feature extraction step and our objective is to select those that are best describing the 

component degradation evolution. To this purpose, we resort to the monotoncity and trendability 

indexes (Coble & Wesley Hines, 2009). Monotonicity is a measure of the underlying positive or 

negative trend of a HI. This is an important feature for the fault diagnostic task, since it is generally 

assumed that systems do not undergo self-healing, which would be indicated by a non-monotonic HI 

(Coble & Wesley Hines, 2009). Specifically, the monotonicity of a HI is defined as 

 

𝑀(𝐻𝐼𝑓) =  𝑚𝑒𝑎𝑛 (𝑀𝑖(𝐻𝐼𝑓
𝑖)) (3) 

 

where 𝑁 is the number of degradation trajectories used to compute the index, #
𝑑

𝑑𝜏
> 0(< 0) is the 

number of points such that the first derivative of signal 𝐻𝐼𝑓
𝑖  is strictly positive (negative). This index 

assumes values within the interval [0,1], where 1 indicates the most satisfactory monotonicity level. 

On the other side, trendability indicates the degree to which the HI of a population of components 

have the same underlying shape and can be described by the same functional form; it is defined as 

 



𝑇𝑟(𝐻𝐼𝑓) = 1 − 𝑠𝑡𝑑(𝑡𝑟𝑖(𝐻𝐼𝑓
𝑖))  (4) 

 

𝑡𝑟𝑖(𝐻𝐼𝑓
𝑖) =

#
𝑑
𝑑𝜏

> 0

𝑛𝑖 − 1
+

#
𝑑2

𝑑𝜏2 > 0

𝑛𝑖 − 2
 𝑖 = 1: 𝑁    (5) 

 

Trendability assumes values within the interval [0,1] where 1 indicates the best case. HIs satisfying 

user requirements in terms of trendability and monotoniity indexes will be referred to as 𝐻𝐼𝑓∗, 𝑓∗ ∈

{1, . . , 𝐹∗}, where 𝐹∗  is the user selected number of HIs. Figure 5 shows the procedure described 

above to develop and select an optimal subset of HIs. 

 

 

Figure 5: Sketch of the procedure to develop and select the optimal subset of His 

3. UNSUPERVISED CLUSTERING FOR DEGRADATION STATE ASSESSMENT 

The objective of this step is 𝑖) to identify the correct number of degradation states in which the 

degradation process should be discretized and 𝑖𝑖) to label the data 𝐻𝐼𝑓∗
𝑖 (𝜏) by associating to each 

pattern its degradation state. This unsupervised clustering problem is tackled by resorting to the Fuzzy 

C-Mean (FCM) clustering algorithm (Jain et al., 1999). As input features to the FCM algorithm we 

employ the His selected at the previous step, 𝐻𝐼𝑓∗
𝑖 . FCM algorithm partions the data 𝐻𝐼𝑖(𝜏) =

[𝐻𝐼1
𝑖(𝜏) …  𝐻𝐼𝑓∗

𝑖 (𝜏) … 𝐻𝐼𝐹∗
𝑖 (𝜏)] in order to minimize the following objective function 

 

𝐽(𝛤, 𝑉) = ∑ ∑ ∑ (𝜇
𝐻𝐼𝑖(𝜏)
𝑖 (𝑐))

𝑟𝑚

𝑛𝑖

𝜏=2

‖𝐻𝐼𝑖(𝜏) − ℎ𝑐‖
2

𝑁

𝑖=1

𝐶

𝑐=1

   𝑟𝑚 > 1  

 

(6) 

 

𝜇
𝐻𝐼𝑖(𝜏)
𝑖 (𝑐) =

1

∑ (
‖𝐻𝐼𝑖(𝜏) − ℎ𝑐‖

‖𝐻𝐼𝑖(𝜏) − ℎ𝑓‖
)

2
𝑟𝑚−1

𝐶
𝑓=1

   𝑖 = 1, … , 𝑁; 𝜏 = 1, … , 𝑛𝑖;  𝑟𝑚 > 1; 𝑐 = 1, … , 𝐶 

 

(7) 



  
 

where 𝐶 is a user defined integer number which represents the number of clusters in which data have 

to be grouped, ℎ𝑐 is the center of cluster Γ𝑐, 𝑟𝑚 is the fuzzifier which determines the level of cluster 

fuzziness and 𝜇
𝐻𝐼𝑖(𝜏)
𝑖 (𝑐) is the degree to which element 𝐻𝐼𝑖(𝜏) belongs to cluster Γ𝑐. To choose the 

most appropriate number of clusters 𝐶∗ the FCM is run several times changing the candidate number 

of clusters from 2 to 𝐶𝑚𝑎𝑥. Then, the best number of clusters is selected resorting to the silhouette 

and Davies-Bauldin coefficients (Cannarile et al., 2015). The former measures how similar a given 

pattern is to patterns in its own cluster with respect to the patterns in the other clusters, where values 

close to one indicate a good clustering. The latter is based on a ratio of within-cluster and between-

cluster distances, and therefore, the smaller the Davies-Bouldin index value, the better the clustering. 

4. CASE STUDY 

This Section presents the results of the application of the proposed method to condition monitoring 

data collected during the degradation of 𝑁 = 23 identical knives. 

4.1 Statistical Indicator Feature Extraction 

Firstly, we have extracted 𝐹 = 27 features (see Appendix) from each 2600-dimensional cut signal 

𝒙𝑖(𝜏), 𝑖 = 1, … ,23. Figure 6 shows an example of evolution of one of the extracted features 

(amplitude of 3𝑟𝑑 harmonic from DFT) during the life of the 23 knives. 

 

Figure 6: Time-evolution of amplitude of 𝟑𝒓𝒅 harmonic from DFT 



4.2 Trend Extraction 

Applying the methodology based on EMD trend extraction discussed in Subsection 2.3; we have 

obtained 𝐹𝑥4 = 108 different candidate health indicators for each knife. Figure 7 shows an example 

of evolution of the mean trend obtained from the application of the Empirical Mode Decomposition 

(EMD) to the of 3𝑟𝑑 harmonic. Notice that after trend extraction, degradation trajectories in Figure 6 

are less noisy and then, more monotone than before. 

 

Figure 7: Time-evolution of the mean trend obtained from the application of the Empirical Mode Decomposition 

(EMD) to the of 𝟑𝒓𝒅 harmonic 

4.3 Feature Selection 

To select an optimal subset of HIs, we have computed the trendability index and the monotonicity 

index for the 27 signals, based on statistical indicators and the 118 obtained possible health indicators. 

Results shows that the choice of constructing HIs based on feature extracted from EMD trends was 

successful: one can observe that there is a considerable improvement in the monotonicity index (best 

monotonicity index for HIs based on statistical indicators is approximatively 0.32, whereas for HIs 

based on EMD trend features, it is greater than 0.7). As HIs to be considered by the FCM clustering, 

we have chosen those reported in Table 1. 

 
Selected HIs Statistical 

Indicator 
After Trend 
Extraction? 

Trend 
Feature 

Monotonicity Trendability 

𝐻𝐼1
𝑖  Δ𝑥 Yes 𝑎 0.7015 0.8783 

𝐻𝐼2
𝑖  Δ𝑥 Yes 𝑏 0.7001 0.8683 

 
Table 1: Selected HIs 

 

where feature Δ𝑥 corresponds to the difference between two particular values of the cut signal 𝒙𝑖(𝜏) 

(more details are not provided for confidentiality reasons). 



4.4 FCM clustering 

The FCM algorithm has been run several times by changing the number of candidate clusters from 2 

to 10. Figures 8 and 9, respectively, show the values of the silhouette and Davies-Bauldin coefficients 

in correspondence to the number of clusters varying from 2 to 10. 

 

 

Figure 8: Silhouette coefficient (to be minimized) increasing the number of clusters from 2 to 10 

 

Figure 9: Davies-Bauldin coefficient (to be maximized) increasing the number of clusters from 2 to 10 

Excluding the case in which only two clusters are identified, from both Figures 8 and 9 we can 

conclude that the best compromise solution according to the two coefficients is given when 𝐶∗ = 4. 

Figure 10 shows for each pattern 𝐻𝐼𝑖(𝜏) the corresponding associate cluster. 

 



Figure 10: Data pattern 𝑯𝑰𝒊(𝝉) marked according to the assigned cluster (hexagram normal, square low 

degraded, diamond mildly degraded and circle very degraded) 

 

From Figure 10, it seems reasonable to assume that the degradation evolution of the knives 

corresponds to the following marker progression:  hexagram (normal)-square (low degraded)-

diamond (mildly degraded)-circle (very degraded). Finally, Figures 11 and 12 show degradation 

trajectories of the 10𝑡ℎ knife and its corresponding labelling provided by the FCM. 

 

Figure 11: Data pattern 𝑯𝑰𝟏
𝟏𝟎(𝒕) marked according to the assigned cluster (hexagram normal, square low 

degraded, diamond mildly degraded and circle very degraded) 

 

Figure 12: Data pattern 𝑯𝑰𝟐
𝟏𝟎(𝒕) marked according to the assigned cluster (hexagram normal, square low 

degraded, diamond mildly degraded and circle very degraded) 

5. CONCLUSION 

In this work, we have developed a method for assessing the degradation state of knives used in the 

packaging industry. We have proposed a general setting to develop HIs and considered the best subset 

of HIs for Fuzzy C-Means clustering to 1) infer the correct number of degradation states (which was 

not known a priori) and 2) label on-line monitored data with their correct degradation state. The 

developed method has been applied with success in practice, to real data from the packaging industry. 
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APPENDIX 
 

Figure 13 shows the extracted features. 

 

 
Figure 13: List of extracted features (acronym FFT refers to Fast Fourier Transform) 

 

 


