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Abstract 

 

Collecting reliability field data from a very large fleet of assets poses the problem of how to effectively 

exploit such big data to optimize the asset maintenance strategies. To address this issue, in this work 

we propose a clustering algorithm based on the similarity of the asset failure behaviors: the 

identification of assets with similar reliability distributions enables addressing the maintenance 

optimization problem of all the assets belonging to the same cluster. To develop this approach, the 

numerous assets are first grouped into populations, based on their covariates (e.g., the working 

conditions and the location). Then, for each population the reliability distribution is inferred from 

the corresponding failure data, and its similarity with the corresponding distributions of the other 

populations is evaluated by calculating the Symmetric Kullback-Leibler Divergence (SKLD). The 

obtained similarity values are fed in input to a spectral clustering algorithm, which finds the clusters 

of assets that will be treated as a whole by the maintenance decision maker.The proposed approach 

is applied to a real case study concerning a set of more than 30000 switch point machines.  
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1. INTRODUCTION 

The optimization of the number of maintenance strategies based on reliability field data becomes a 

challenging issue when the number of managed assets is very large (e.g., millions). The proper use 

and exploitation of the associated reliability (big) data calls for advanced data mining techniques 

(Meeker & Hong, 2014). In this context, this work proposes a clustering algorithm for grouping assets 

based on their reliability distributions: clusters of assets with similar failure behavior will, then, 

undergo the same preventive maintenance optimal schedule. Indeed, this approach opens to the 

possibility of optimizing the maintenance strategy specifically for all assets belonging to a same 

cluster.  



The proposed approach has been applied to reliability data collected for devices of the Italian 

railway system. Before the study presented in this paper, the grouping of the assets (for maintenance 

strategies planning) was only based on some technical information (such as rail type, switch point 

machine model, etc.) and/or geographic localization, rather than accounting for their common 

reliability features, that is, indeed the key novelty of the here proposed approach. Although the case 

study is derived from a real industrial application, due to the non-disclosure agreement with the 

industrial partner, the data shown in this paper have been opportunely re-scaled and modified.  

The remainder of the paper is organized as follows: Section 2 states the problem. Section 3 details 

the methodology to cluster assets based on their reliability distributions. Section 4 describes the 

application of the Symmetric Kullback-Leibler Divergence (SKLD) to assess the similarity between 

reliability distributions. In Section 5, the spectral clustering algorithm is presented. Section 6 presents 

the case study concerning assets of the Italian railways. Finally, in Section 7 some conclusions are 

drawn. 

2. PROBLEM STATEMENT 

Our objective is to develop a clustering algorithm capable of grouping A  different assets into *C  

clusters, *C A , based on their reliability behaviors so that the decision maker would reduce the 

number of maintenance decisions to take from A  to *C . We suppose that for the tha  asset, 

 1, , ,a A   the following pieces of information are available: 

1. the values of K  categorical variables (covariates) 1( ,..., )KX X containing technical information 

about the asset. These values are collected into the vector  1 , ,  K

a a ax x x ; 

2. A collection of an  independent field observations registered into the vector  ,a a aD y δ , where 

 1 , ,  ,an

a a ay y y  0 ,  1,...,b

a ab ny  R  and  1, ,  an

a a a  δ   0,1 1,...,,b

a ab n  ; in other 

words b

ay  is a current failure time if b

a  is equal to 1, or a right-censored observation if b

a  is equal 

to 0, {1, , }ab n  .  

Finally, we assume that a perfect maintenance is performed upon asset failure and, then, the asset can 

be considered “as good as new” after repair. This assumption allows us considering failure times 

within dataset aO  as statistically independent. 

3. METHODOLOGY SNAPSHOT 

The methodology proposed in this work is based on the following steps: 



1 Based on the knowledge of experts, identify the subset
1(X ,…,  

K
X ) of covariates 1(X ,…, )KX , 

K <K, which allows partitioning the assets in N A  populations, corresponding to different 

combinations of covariates 
1(X ,…,  

K
X ). Then, each statistical population i = 1,…, N  is assigned 

a time to failure dataset  
1
, ,

ni
ii i  DO D , where  1, ,

ini i  are indexes referring to the assets 

belonging to the thi  population. Notice that the identification of these populations differs from 

clustering analysis, which, indeed, aims at grouping these statistical populations based on their 

reliability distributions.  

In particular, the reliability distribution of the thi  population is assumed to be a Weibull 

distribution of scale parameter i  and shape parameter i ,i=1,…N. The probability density 

function is given by  
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     whereas the corresponding reliability function and hazard rates are, respectively: 
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2 Apply the Maximum Likelihood Estimation (MLE) technique to each population i to estimate the 

parameters ( ,  )i i  of Eqs. (1), (2) and (3). In this respect, in this work we assume that MLE exists 

for every 1,...,i N . In many real applications, this assumption may not be valid. In these cases, 

one can use either Bayesian statistical inference techniques (Cannarile et al., 2016), or perform 

quantization on the K  covariates to reduce the number of possible populations, each one 

consisting which of a larger number of assets. 

3 Quantify the similarity between all pairs of statistical populations from the reliability perspective. 

This task is achieved quantifying how similar are the reliability distributions (either Eq. (1) or Eq. 

(2)) of each pair of statistical populations i  and j , where , 1,...,i j N .. The SKLD is here adopted 

to compute the similarity 
ijw  between densities if  and jf representative of the reliability 



distributions of statistical populations i  and j , respectively, This point of the methodology is 

detailed in Section 4. 

4 The similarity matrix W , whose entries are given by similarities 
ijw ,  is given in input to the 

Spectral Clustering Algorithm (SCA). This point of the methodology is detailed in Section 5. 

5 Infer the best number of clusters *C  quantifying a compromise between the silhouette (Rousseuw, 

1987) and Davies-Bauldin coefficients (Davies & Bauldin, 1979), as described in Section 6. 

6 Create the failure time datasets 
1
, ,

n
p

p pp

 
  
 

O Ο Ο , where  1, ,
pnp p  are the indexes 

referring to the statistical population assigned to cluster  *1, ,  .p C   Again, each cluster is 

assumed to be Weibull distributed with scale parameter p  and shape parameter p . 

7 Apply the MLE technique to estimate parameters ( ,  )p p   for each cluster. 

4. SIMILARITY BETWEEN PROBABILITY DISTRIBUTIONS 

In this work, we need a similarity measure (Pollard, 2002) that takes large values for probability 

distributions describing similar reliability behaviours, and small values for those modelling diverse 

reliability behaviors.  

However, when dealing with probability distributions, similarity measures such as the Euclidean 

distance, Mahalanobis distance, etc. cannot be exploited, since they apply to finite-dimensional 

objects, whereas probability distributions are infinite. For this reason, we use the Kullback-Leibler 

Divergence (KLD) dissimilarity measure (Kullback & Leibler, 1951). 

Throughout this paper, let Ω  denote the sample space, F  a  -algebra on Ω , and P  the set of 

probability measures on the measurable space (  , ) F . Let i  and j  be two elements of P , and if  

and jf  their corresponding probability density functions with respect to a dominating measure   . 

Then, the KLD dissimilarity of i  from j , denoted with ( || )KL i jd   , is defined as: 

Ω

( || ) (  || )  ln  i
KL i j KL i j i

j

f
d d f f d

f
f              (4) 

Note that, in general, ( || ) ( || )KL i j KL j id d    .  

Otherwise, if we define the SKLD between i  and j  as: 

   
1

, ( || ) ( || )
2

sym

KL i j KL i j KL j id d d                 (5) 



then sym

KLd  is a dissimilarity measure (being symmetric). We can, therefore, define the similarity 

corresponding to the SKLD (Gower, 1985) (Gower, 1986) as in Eq. (6): 

1

1
ij sym

KL

w
d


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         (6) 

This measure is used to compute the similarity between the reliability distributions if  and jf  of two 

different populations of components. In this respect, notice that the densities if  and jf  in Eqs. (4) 

and (5) are assumed Weibull distributions in our case study. This makes the computation of ijw  not 

straightforward. Nonetheless, we can exploit the results provided in (Bauckhage, 2013) to efficiently 

compute the KLD divergence in Eq. (4) between two Weibull densities  | ,i i if y    and 

 | ,j j jf y   as in Eq. (7):  
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where 0.5772   is the Euler-Mascheroni constant, whereas Γ  is the gamma function defined as 

follows: 

  1

0

Γ z z tt e dt



   0z          (8) 

5. SPECTRAL CLUSTERING 

The computation of the similarity between all pairs of if  and jf  to be clustered by using similarity 

in Eq. (6) originates the similarity matrix W  of size  ,N N , whose generic element 
 ijw represents 

the similarity between the statistical populations i  and j  (and thus, the diagonal elements  iiw  are set 

to 1 and the matrix is symmetric 
   ij jiw w ). From matrix W , a similarity graph  ,G V E  is 

constructed, where each vertex 
iv  represents the i -th group and the weight associated to the edge ije  

connecting the two vertices i  and j  is the similarity value  ijw (von Luxburg, 2007). In this view, the 

original problem of identifying families of similar statistical populations is re-formulated in that of 

finding the partition of the similarity graph such that the edges connecting elements of different 

groups have the smallest weights, whereas the edges connecting elements within the same group have 

the largest weights (Alpert et al., 1999).  

In details, the spectral clustering algorithm is based on the following steps (Baraldi et al., 2013): 

 



Step1: normalized Graph Laplacian Matrix 

Compute: 

 

• the degree matrix D  which is a diagonal matrix with diagonal entries 1d ,…, Nd  defined by: 

            

1

,      1, ,
N

i ij

j

d w i N


            (9) 

• the normalized graph Laplacian matrix 

           
1/2 1/2 1/2 1/2

symL D LD I D WD              (10) 

where L D W  , and I  is the identity matrix of size  ,N N . 

Step2: feature extraction 

The relevant information on the structure of the matrix W  is obtained by considering the eigenvectors 

1, , Cu u  associated to the C smallest eigenvalues 1, , C  of its laplacian matrix 
symL , whereC is 

the desired number of clusters. The square matrix W  is transformed into a reduced matrix U  of size 

 ,N C , in which the C  columns of U  are the eigenvectors 
1, , Cu u . Thus, the i -th object is 

captured in the C -dimensional vector iu  corresponding to the thi  row of the matrix .U  A matrix T  

is formed from U  by normalizing its row (von Luxburg, 2007):  
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It has been shown that this change of representation enhances the cluster properties in the data, so 

that clusters can be more easily identified (von Luxburg, 2007). 

 

Step3: Unsupervised clustering 

In this work, we resort to the K-means (Hartigan, 1975) algorithm to partition the data into C  clusters. 

Details on this clustering method can be found in Appendix. 

6. CASE STUDY 

A case study concerning devices of the railway infrastructure is here discussed. The available dataset 

consists of A32285 different assets for which the values of K  12 categorical variables 1(X ,…,

)KX  are provided (for confidentiality, details are not given here). Among these covariates, a subset 



of K  5 categorical variables 
1(X ,…,   )

K
X  has been selected by experts. Based on their values, 

N 374 populations of components have been identified, with corresponding failure time datasets 

 ,  1, ,374 .i i O  Then, the estimates of the Weibull parameters ( ,  )i i   for all 374 populations 

have been obtained by resorting to MLE method. In Figure 1, the estimated values of the scale 

parameters (abscissas, in logarithmic scale) and shape parameters (ordinates) are shown. 

 

 

 

Figure 1: Estimated Weibull parameters for each statistical population 

 

The similarity matrix W  has been obtained by computing the similarity measure 
ij

w of Eq (6) between 

all possible 374 pairs of statistical populations. To assess the most appropriate number of clusters, we 

have resorted to the silhouette and Davies-Bauldin coefficients. The former measures how similar 

that population is to the populations in its own cluster with respect to the populations in other clusters, 

and ranges from -1 to +1, where values close to one indicate a good clustering. The latter is based on 

a ratio of within-cluster and between-cluster distances, and therefore, the smaller the Davies-Bouldin 

index value, the better the clustering. Figures 2 and 3, respectively, show the values of these 

coefficients in correspondence to the number of clusters varying from 2 to 10. 

 

 

Figure 2: Silhouette coefficient increasing the number of clusters from 2 to 10. 
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Figure 3: Davies-Bauldin coefficient increasing the number of clusters from 2 to 10. 

 

Excluding the case in which only two clusters are identified, from both Figures 2 and 3 we can 

conclude that the best compromise solution according to the two coefficients is given when *C  5. 

Figure 4 shows, for each statistical population, in abscissa the log scale parameter ( log( ) ) and in 

ordinate the respective value of the shape parameter (  ). From this Figure, it emerges that the 5 

clusters (depicted by different markers) divide the semi-plane ( log( ) ),  ) in 5 pairwise disjoint 

regions and, therefore, we can conclude that these 5 clusters really identify different reliability 

behaviours. 

 

 

Figure 4: Values of the (log) scale parameters (abscissa axis) and shape parameters (ordinate axis) (different 

markers correspond to the different clusters). 

 

After these clusters have been identified, we can estimate the common reliabity distribution of all 

assets belonging to the same clusters. We have still assumed that the reliability behaviour of each 

clusters is described by a Weibull probability distribution, by reason of the flexibility of this 

distribution. In Table 1, the MLE values of the scale parameters and shape parameters are reported 

for each cluster. From this, one can conclude that: 

1. There are three clusters (circles, crosses and squares) for which the estimated values of the shape 

parameters are similar to each other ( 1)  , whereas the estimated values of the scale parameters 

are very different. For these clusters, the hazard rate is a decreasing function of  time. 
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2. There are two clusters (stars and triangles) with shape parameters assuming values larger than 

one, and with very different values of the estimated scale parameters. For these clusters, the 

failure rate is an increasing function of time. 

 

Scale Parameter 
p

  Shape Parameter 
p  

 

Cluster marker 

0.0039 e+05 0.7268 circle 

0.3376e+05 1.3475 star 

0.0251e+05 0.8263 cross 

0.0683e+05 2.4293 triangle 

1.8325e+05 0.8783 square 

 

Table1: MLEs of scale and shape parameters of each cluster. 

 

Finally, in Figure 5, the reliability functions relative to the * 5C   identified clusters are shown. This 

information enables the scheduling of only 5 preventive maintenance strategies, which are applied to 

all the assets belonging to the corresponding clusters. 

 

Figure 5: Reliability function  R t  relative to the 5 clusters (different markers correspond to the different 

clusters) 

7. CONCLUSIONS 

 

In this work, we have presented a similarity-based approach for managing reliability big data to 

optimize maintenance strategies on large fleets of assets. Our methodology is based on, firstly, 

grouping the assets in statistical populations according to their technical properties, then, clustering 

them based on the similarity of their reliability functions. To quantify the similarity between 

reliability functions, the SKLD has been exploited. The proposed methodology has been successfully 
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applied to a case study concerning assets of the railway system, with more than 30000 assets grouped 

in 5 clusters. This way, only 5 preventive maintenance strategies need to be optimally scheduled, and 

applied to all the assets belonging to the corresponding clusters. 
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APPENDIX 

 

K-means (Hartigan, 1975) is an unsupervised learning algorithm that solves the well-known 

clustering problem. The procedure follows a simple and easy way to partition the N vectors 

 1, , Nt t , where 
1( ,..., ),  1,...,i Ct t i N t  as defined in Eq. (11), into C  clusters 

 1

1

, , ,  
C

C

c

cS S S S N


   . The main idea is to define C centroids, one for each cluster. These 

centroids shoud be placed in a cunning way because of different location causes different result. So, 

the better choice is to place them as much as possible far away from each other. The next step is to 

take each vector ,  1,..., ,i i Nt and associate it to the nearest centroid. When no point is pending, the 

first step is completed and an early groupage has done. At this point, we need to re-calculate C new 

centroids as barycenters of the clusters resulting from the previous step. After we have these C  new 

centroids, a new binding has to be done between the same data set points and the nearest new centroid. 

A loop has been generated. As a result of this loop we may notice that 
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