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Abstract

We consider the maintenance process of Gas Turbines (GTs) used in the Oil & Gas industry:

the capital parts are �rst removed from the GTs and replaced by parts of the same type taken

from the warehouse; then, they are repaired at the workshop and returned to the warehouse,

for use in future maintenance events. Experience-based rules are used to manage the �ow of the

parts, for a pro�table GT operation. In this paper we formalize the part-�ow management

as a Sequential Decision Problem (SDP) and propose Reinforcement Learning (RL) for its

solution. An application to a scaled-down case study derived from real industrial practice

shows that RL can �nd policies outperforming those based on experience-based rules.
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Symbols & Acronyms

DM Decision Maker
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MRC Most Residual Cycles

MS Maintenance Shutdown

PFM Part Flow Management

RL Reinforcement Learning

RUL Remaining Useful Life

SDP Sequential Decision Problem

γ Discount factor

Sk State vector at the k-th MS, Sk = [Sk,1, ..., Sk,R+1]

Ak Action taken at the k-th MS

ak,ρ Boolean variable equal to 1, if action ρ is taken at the k-th MS and 0 otherwise

Crep(r) Repair cost for a part with r maintenance cycles remaining

Cscrap Cost of scrapping a part

Ck Cost incurred at the k-th MS

dk RUL of the part removed from the GT maintained at the k-th MS

G Total number of GTs

g Index of the GT undergoing maintenance at the k-th MS

k MS index, k = 1, ..., T

N Total number of RL episodes

n Index of RL episodes, n = 1, ..., N

Qπ(Sk, Ak) State-Action pair value following policy π from the k-th MS on

R Maximum RUL

r RUL index

T Total number of scheduled MS

V Total value of the maintenance expenditures

W Maximum number of parts that can be stored at the warehouse

wr,k Number of parts with RUL=r available at the warehouse at the k-th MS
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Z Number of scheduled MSs for each GT

1 Introduction

Gas Turbines (GTs) employed in the Oil & Gas industry are made up of various expensive capital

parts (e.g., buckets, nozzles, shrouds, etc.), which are a�ected by di�erent degradation mechanisms

(e.g., fracture and fatigue (1), (2), (3), fouling (4), (5), (6), corrosion (7),(8), oxidation (9)) that

can lead to GT failures with costly forced outages.

Given the criticality of the GT degradation processes, attentive engineering analyses have been

performed to characterize their behaviors. These studies, corroborated by economic considerations,

have yielded the de�nition of the preventive maintenance policy, detailed in (10), determining both

the optimal length of the working cycles before scheduled Maintenance Shutdowns (MSs) and the

maximum number of these working cycles that every type of capital part can perform, provided

that it is repaired after each cycle. The repaired parts are put back in the warehouse, ready to be

installed at one of the next MS of a GT in the same Oil & Gas plant.

From the above, it clearly emerges that the management of GT maintenance is a very complex

issue, which requires a speci�c expertise for performing the intricate procedures for GT disas-

sembling and re-assembling, an e�ective logistic organization for managing the spares (i.e., their

ordering, shipping, etc.), a deep knowledge about the degradation processes a�ecting the parts for

their e�ective repair, etc. (e.g., see (11) for an overview). Whilst GT manufacturers are usually

structured for addressing all these issues, their customers may not be fully quali�ed to do so.

This is among the main justi�cations of the increasing di�usion of maintenance service contracts

between the GT manufacturers (i.e., the maintenance service providers) and the GT owners (i.e.,

the recipients of the service) (12; 13).

Service contracts yield new business opportunities to GT manufacturers, who can sell the GTs pro-

duction rates, instead of selling the GTs, with consequent added values if they assume portions of

the clients' business risks ((12)). To do this, however, GT manufacturers need to develop e�ective

and e�cient maintenance strategies and spare part inventory management policies ((14; 15)).

In particular, e�ective strategies are required to manage the periodic MSs, where decisions must

be made on both the removed part (send it to the workshop for repair or scrap it) and the part

to be installed on the GT (new part or part taken from the warehouse). These decisions strongly

impact on the pro�tability of the GT maintenance service contract, as they determine both the

direct costs incurred by the service provider for repairing the parts and the indirect costs from

the risk of forced outages due to GT failures, which entail penalties to the maintenance service

provider. For example, scrapping old parts reduces risk and workshop costs but increases the

number of purchase actions taken by the maintenance service provider. Furthermore, at the end of
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the maintenance service contract the warehouse may contain healthy parts ready for installation,

whose value is lost by the service provider.

The parts installed on the GTs are no longer available at the warehouse for replacement at the

next MS and when they return to the warehouse (if not scrapped), they do so with a reduced

number of remaining working cycles. Thus, the decisions at every MS in�uence the decisions at

the next MSs: in this sense, the Part Flow Management (PFM) can be framed as a Sequential

Decision Problem (SDP)(16), seeking for the best sequence of future maintenance decisions (i.e.,

the optimal policy) over the duration of maintenance service contract. This requires the Decision

Maker (DM) to consider variables such as the remaining time up to the end of the service contract,

the availability of spares, the costs related to the repair actions, etc.

Despite the relevance of PFM for the pro�tability of the maintenance service contracts, to the

authors' best knowledge systemic approaches to address it are still lacking. Indeed, the literature

on service is very vast (13; 15), but it covers issues di�erent from that of optimizing the part

�ow. For example, methods for setting the optimal price of service contracts are proposed in

(12; 13), within the game theory framework. The same issue, i.e., contract pricing optimization,

is investigated in (17) in combination with the optimization of logistics (i.e., facility locations,

capacities and inventories with given service level), and in combination with the issue of optimally

scheduling preventive maintenance in (14; 18). In (19) the maintenance, the spares inventory, and

the repair capacity are optimized together under the performance contracting framework. Other

optimization objectives are the minimization of the warehouse costs through the reduction of the

average number of parts sojourning therein (e.g., (14)), the identi�cation of the optimal times for

performing maintenance actions and ordering parts (e.g., (20; 21)), the level of repair ((22)), etc.

The focus of this paper is on the search of the best PFM strategy that minimizes the service

contract costs over a �nite time horizon. Currently, the management of the part �ow is dealt

with experience-based rules, such as the Most Residual Cycles (MRC) one: the removed parts are

always repaired till the end of the maintenance service contract and, at each MS, the parts with

the largest residual life among those available at the warehouse are installed on the GT; a new

part is purchased only when the warehouse is empty. This simple and intuitive rule guarantees the

smallest repair cost at the smallest probability of failure; nonetheless, it is a greedy policy, which

may not yield the best PFM strategy on a �nite time horizon.

This work, together with (23), introduces the PFM problem, formalizes it as a SDP and proposes

the use of Reinforcement Learning (RL, (16; 24; 25)) for its solution. RL is a machine learning

technique suitable for addressing SDPs (24), widely applied to decision-making problems in diverse

industrial sectors, such as the electricity market (26; 27), military trucks (28), process industry

(29), supply chain, maintenance and inventory management (20; 30; 31; 32; 33), to cite a few.

The problem formulation and solution framework proposed in this paper is applied to a scaled-
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down case study. Di�erently from (23), the aleatory uncertainty in the part failure behavior is

not considered, for ease of conceptualization and illustration of the fundamental concepts and

algorithms introduced. This allows:

• proving that the current policy is not optimal even in a simple case with no uncertainty: in

the case study, it turns out that the solution given by the MRC rule is not optimal, being

outperformed by the policy found by RL

• performing a sensitivity analysis of the pro�tability of the contract with respect to the deci-

sion variables. The analysis of the policies found by MRC and RL shows the extreme impact

of the decision variables on the pro�tability of the contract in this simple deterministic ap-

plication, which is expected to increase in more realistic cases.

To sum up, the main contribution of this paper is the formulation of the PFM problem optimiza-

tion and the demonstration of the limitations of the experience-based approach currently used.

Even with improvements to the current rules the experience-based approach is shown to be always

outperformed by the optimal policy found by RL, although other optimization algorithms (e.g.,

evolutionary, linear programming, etc...) can be used. Notice, however, that RL is the only ap-

proach that can be extended to PFM realistic applications, in which the aleatory uncertainty in the

part failure behavior is considered together with many other GT operational characteristics and

maintenance rules. This capability of RL is due to the fact that it learns from the scenarios simu-

lated and evaluated, whereby the e�ort in modeling the optimization problem strongly simpli�es.

Given the relevance of PFM for maintenance service contract management and the complexity of

the problem, which dramatically increases as more variables are considered, our work is expected

to give rise to a dedicated line of research on the PFM, which is indeed an important driver in the

maintenance policy of the GTs.

The structure of the paper is as follows: in Section 2, we introduce the mathematical formulation

of the problem. In Section 3, details about the RL algorithm are brie�y provided. In Section 4,

a case study is introduced to compare the performance of the RL algorithm to PFM and that of

MRC. Finally, conclusions are drawn in Section 5.
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Figure 1: Times of the �rst MSs of the G gas turbines. The cross-markers denote the MSs. The

turbines are indicated by the order of occurrence of their �rst MS. The MSs occur at �xed times.

2 Problem setting

As mentioned before, the setting considered in this work is derived from a real application of the

Oil & Gas industry. However, some simplifying assumptions are made with respect to the real

case, which do not a�ect its main features and the modeling issues. Rather, these assumptions

allow disregarding cumbersome technicalities, which is bene�cial for the clarity of illustration.

Consider a number G of GTs operated in an Oil & Gas plant. For simplicity of illustration, we

consider tracking the �ow of a single capital part throughout the maintenance management process

without loss of generality of the proposed framework, because the �ows of the di�erent capital parts

can be assumed independent on each other: although they share the same workshops, this has no

practical e�ect on the mutual dependence of the part �ows.

GTs in the plant are periodically maintained, with MSs staggering so that two MSs are never

performed simultaneously. In coherence with the real industrial application inspiring this work,

we assume that the uncertainty on scheduling time is negligible, as the time windows to perform

maintenance are de�ned by stringent contract rules. The repair time is assumed negligible with

respect to the time between two MSs, which implies that the part removed and, then, repaired

at any MS is always available at the next MS. The Remaining Residual Useful Life (RUL) of the

part is the number r of working cycles remaining. The RUL values range between r = 0, when

the part must be scrapped, and r = R, when the part is new.

The GTs operate for the whole contract duration. In the real industrial practice, there are several

ways to de�ne the contract end date such as calendar time, total factored �red hours, achievement

of a given number of major maintenance tasks or combinations of these. For ease of illustration,

we assume that the contract duration is de�ned by the total number of scheduled MSs for every

6



GT, denoted by Z: then, a total number T = Z ·G of MSs is performed during the maintenance

service contract duration.

The MSs sequence recycles after the maintenance of the last GT. Under these assumptions, the

GT undergoing maintenance at the k-th MS, k ∈ {1, ..., T}, is univocally identi�ed and indicated

by the order of occurrence of its �rst MS (Figure 1).

At the k-th MS the following decisions must be made:

• For the part removed from the g-th GT, decide whether to repair it or scrap it. Crep(r) is

the cost of repairing a part with r ∈ {1, ..., R} remaining cycles, whereas Cscrap is the cost

of scrapping a part, whatever its RUL is.

• For replacing the removed part, decide whether to buy a new part or select one from those

currently available at the warehouse, if any. Cpur is the cost of purchasing a new part,

whereas the cost of selecting a part from the warehouse is zero, as repair costs have been

accounted for at the end of its last working cycle.

We introduce the integer variables dk and wr,k to indicate the RUL of the capital part removed

from the GT maintained at the k-th MS and the number of parts with RUL equal to r available

at the warehouse for the k-th MS, respectively, where r ∈ {1, ..., R}, w ∈ {0, ...,W} and W is the

maximum number of parts that can be stored in the warehouse for each RUL value. Obviously,

this limitation is introduced to give due account to the typical constraints on space availability in

warehouses and, at the same time, reduce the state space cardinality.

We also de�ne the boolean variable ak,ρ ∈ {0, 1} to indicate whether action ρ ∈ {0, ..., 2R + 1} is
taken at the k-th MS. Speci�cally:

• ak,0 = 1 when a new part is purchased and installed, whereas the removed part is scrapped.

• ak,ρ = 1, ρ ∈ {1, ..., R}, when a part with RUL = ρ is installed and the removed part is

scrapped.

• ak,R+1 = 1 when a new part is purchased and installed, and the removed part is repaired.

• ak,ρ = 1, ρ ∈ {R + 2, ..., 2R + 1}, when a part with RUL = ρ − R − 1 is installed and the

removed part is repaired.

The boolean variables ak,ρ are such that only one action can be taken at each MS:

2R+1∑
ρ=0

ak,ρ = 1 (1)

The cost incurred at the k-th MS, then, reads:
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Ck = (ak,0 + ak,R+1) · Cpur +
R∑
ρ=0

ak,ρ · CScrap +
2R+1∑
ρ=R+1

ak,ρ · CRep(dk) (2)

The total cost incurred over the entire maintenance service contract duration is the objective

function to minimize and is given by:

V =
T∑
k=1

(Ck) (3)

Finally, the following equations hold for κ ∈ {1, ..., T −G} and k ∈ {1, ..., T}, respectively:

dκ+G = (aκ,0 + aκ,R+1) ·R +
R∑
ρ=1

(aκ,ρ · ρ) +
2R+1∑
ρ=R+2

(aκ,ρ · (ρ−R− 1))− 1 (4)

wr,k+1 = wr,k − (ak,r + ak,r+R+1) + zk,r (5)

where:

zk,r =

1, if r = dk ∧
∑2R+1

ρ=R+1 ak,ρ = 1

0, otherwise
(6)

Speci�cally, Eq. (4) is the updating rule of the part RULs between two consecutive MSs of the

same GT and Eq. (5) is the updating rule of the number of parts available at the warehouse for

any pair of consecutive MSs.

3 Algorithm

In this Section, we give some details about the model-free RL algorithm here developed for part

�ow optimization. Generally speaking, RL is based on the idea that the DM, who is usually

referred to as agent, learns from his/her interactions with the environment to achieve pre�xed

goals, without knowledge on the updating dynamics of the environment and the speci�c e�ect of

his/her actions. Thus, we only need to de�ne the state of the environment, the actions available

at each state and the corresponding rewards (16).

The state at the k-th MS is de�ned by the vector Sk ∈ NR+1, k ∈ {1, ..., T}, whose j-th element

is:

Sk,j =

wj,k if j ∈ {1, ..., R}

k if j = R + 1
(7)
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In words, the �rst R entries of the state vector at the k-th MS de�ne the number of parts with

the di�erent RUL values available at the warehouse, whereas the last entry updates the number

of MSs performed (34). Then, the total number of possible states is T · (W + 1)R.

Notice that the state vector Sk does not encode any information about the parts currently installed

on the GTs. This leads the SDP to not fully satisfy the Markov property (16), (35), which requires

that the knowledge of the current state of the environment be su�cient to predict its future

evolution. To see that this property is here infringed, we can notice from Eq. (5) that the state

reached by taking any action is completely de�ned only if we know dk. Since this variable is not

encoded in the state vector, we observe that we have transitions towards di�erent states even if we

take the same action on the environment in a given state. As pointed out in (16), the loss of the

Markov property typically a�ects the RL capability of fast convergence to the optimal solution,

although RL is eventually able to �nd it.

The choice of not including the RUL values of the parts installed on the GTs into the state vector

has a twofold justi�cation. On one side, including them would broaden the vector state size,

which would become T · (W + 1)R · RG: this leads to heavy computational burdens, undermining

the applicability of the proposed framework. If for example, we consider that in a real industrial

application R = 6 and G = 10, then the proposed de�nition of state would reduce the state vector

size by 610. On the other side, we observe from Eq. (4) that the environment state after G MSs

is known for any sequence of G actions. Then, the process describing the evolution of the state

is a G-order Markov process, in the sense that the knowledge of the sequence of states at the last

G events is su�cient to predict its future evolution. Thus, the information about the RUL of the

parts installed on the GTs becomes redundant after G steps.

The action taken at the k-th MS is indicated as:

Ak =
2R+1∑
ρ=0

(ak,ρ · ρ) (8)

The base reward at the k-th MS is the opposite of the maintenance cost, −Ck, as RL is usually

framed as a maximization task, whereby minimizing cost is equivalent to maximizing its opposite.

In the RL framework, each state-action pair is described by Qπ(Sk, Ak), which measures the ex-

pected return starting from state Sk, taking action Ak and thereafter following policy π (16):

Qπ(Sk, Ak) = Eπ[
T∑
t=k

(γt−k · (−Ct))|Sk, Ak] (9)

where k ∈ {1, ..., T} and γ ∈ [0, 1] is the discount factor. Being the time horizon �nite, we set
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γ = 1.

In this work, we use the SARSA(λ) algorithm to �nd the best approximation of the values of

Qπ(Sk, Ak), k = 1, ..., T , which simulates a large number of state-action episodes while guaranteeing

a faster convergence (e.g., (16), (36)). The SARSA(λ) algorithm relies on the following updating

formula at every MS, k:

Q(Sz, Az)←− Q(Sz, Az) + (γλ)(k−z)αn · [−Ck + γQ(Sk+1, Ak+1)−Q(Sk, Ak)]∀z ∈ {1, ..., k} (10)

where λ ∈ [0, 1] is the parameter governing the eligibility trace and αn ∈ [0, 1] is the learning rate

at the n-th episode (see Appendix for further mathematical details).

The choice of using SARSA(λ) among the available RL algorithms (e.g., (25)) is justi�ed by the

fact that within the family of value-based RL algorithms, SARSA(λ) has been shown to be a

very e�ective on-policy method ((25)). This makes it simpler to extend it to the eligibility trace

paradigm, which guarantees fast and robust convergence, especially in case of �nite time horizon

SDPs ((16), (36)). On the contrary, o�-policy RL algorithms such as Q(λ) do not allow updates

that use all the rewards up to the end of the �nite horizon due to the presence of explorative

actions.

On the other hand, the proposed RL solution su�ers from some limitations that can still prevent its

full application to the industrial practice in the current form: in complex problems, the state-space

becomes very large, whereby the tabular representation of the state-action value function is not

practicable. For this, action-value approximation techniques can be used, instead of the tabular

approach hereby presented. This allows generalizing the state description, e.g., by removing the

contraints on the maximum number of parts available in the warehouse for each RUL level or

considering real-valued RUL estimations.

4 Case study

In this Section, we consider a case study derived from an industrial application. The main char-

acteristics are summarized in Table 1. In the considered Oil & Gas plant there are G = 2 GTs

(�rst column in Table 1), each one maintained for Z = 10 cycles (second column). The maximum

component RUL, R, and the maximum number of available parts in the warehouse for each RUL

value, W , are both set equal to 3 (third and forth columns in Table 1, respectively). The cost

values are shown in the last four columns of Table 1. These values are given in arbitrary units and

for illustration purposes, only.

The total number of possible states is T · (W + 1)R = 1280 and the total number of state-action
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pairs is T · (W + 1)R · (2R + 2) = 10240.

Table 1: Initial scenario and parameters

G Z W R CScrap Crep(r = 1) Crep(r = 2) Cpur

2 10 3 3 0 50 90 100

The application of the MRC rule to the considered case study is summarized in Table 2. Namely,

the �rst column reports the MS counter, k, followed by three columns representing the situation

of the warehouse at the corresponding MS. For example, at the beginning of the considered time

horizon, i.e., at k=1, there are three parts with one remaining cycle, w1,1 = 3, one part with two

remaining cycles, w2,1 = 1, and no new parts, w3,1 = 0.

Table 2: MRC policy

k w1,k w2,k w3,k RUL@GTg = 1 RUL@GTg = 2 RUL Installed Part Repair Purchase Ck

1 3 1 0 2 1 2 Y N 50

2 3 1 0 2 0 2 N N 0

3 3 0 0 1 2 1 Y N 90

4 3 0 0 1 1 1 Y N 90

5 3 0 0 0 1 1 N N 0

6 2 0 0 1 0 1 N N 0

7 1 0 0 0 1 1 N N 0

8 0 0 0 1 0 3 N Y 100

9 0 0 0 0 3 3 N Y 100

10 0 0 0 3 2 3 Y Y 150

11 0 1 0 2 3 2 Y N 50

12 0 1 0 2 2 2 Y N 50

13 0 1 0 1 2 2 Y N 90

14 1 0 0 2 1 1 Y N 90

15 1 0 0 1 1 1 Y N 90

16 1 0 0 1 0 1 N N 0

17 0 0 0 0 1 3 N Y 100

18 0 0 0 3 0 3 N Y 100

19 0 0 0 2 3 3 Y Y 150

20 0 1 0 3 2 2 Y (N) N 50 (0)

- 0 1(0) 0 2 2 - - TOT 1350 (1300)

The RUL values of the parts installed on GTs g = 1 and g = 2 are reported in the �fth and sixth

columns, respectively, where the maintained GT is indicated in bold. For example, the part on
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the GT undergoing maintenance at k = 1, g = 1, has d1 = 2 remaining cycles, whereas the GT

g = 2 has been equipped with a part with one remaining cycle at the last MS.

The next three columns detail the action taken at the k-th MS. For example, at the �rst MS, the

RUL of the part installed on GT g = 1 is r = 2 (seventh column) and the action taken is a repair

(eighth column), with no purchase of new parts (nineth column), i.e., A1 = 6. Finally, the last

column reports the maintenance cost, Ck, at the k-th MS, k = 1, ..., T .

To go further into the updating dynamics of Table 2, we can see that at the second MS, w2,2 = 1

because the part removed from GT g = 1 is now available at the warehouse for installation on GT

g = 2. The removed part must be scrapped, as it has no remaining cycles, d2 = 0. This gives a

maintenance cost C2 = 0. Notice that the RUL of GT g = 1 is not modi�ed at MS k = 2, as RUL

values are updated at the end of the maintenance cycles, only.

Table 3: RL policy

k w1,k w2,k w3,k RUL@GTg = 1 RUL@GTg = 2 RUL installed part Repair Purchase Ck

1 3 1 0 2 1 1 Y N 50

2 2 2 0 1 0 2 N N 0

3 2 1 0 0 2 3 N Y 100

4 2 1 0 3 1 3 N Y 100

5 2 1 0 2 3 3 Y Y 150

6 2 2 0 3 2 2 Y N 50

7 2 2 0 2 2 3 Y Y 150

8 2 3 0 3 1 3 Y Y 190

9 3 3 0 2 3 2 Y N 50

10 3 3 0 2 2 2 Y N 50

11 3 3 0 1 2 2 N N 0

12 3 2 0 2 1 1 N N 0

13 2 2 0 1 1 1 N N 0

14 1 2 0 1 0 1 N N 0

15 0 2 0 0 1 2 N N 0

16 0 1 0 2 0 3 N Y 100

17 0 1 0 1 3 3 N Y 100

18 0 1 0 3 2 2 Y N 50

19 0 1 0 2 2 2 Y N 50

20 0 1 0 2 1 2 N N 0

- 0 0 0 1 2 - - TOT 1190

Finally, notice that the GT parts are purchased when the warehouse is empty, only. For example,

at MS k = 8, a part is purchased and installed on GT g = 2 with r = 3.
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The part �ow solution given by the application of the MRC rule yields a total maintenance cost

of 1350 (in arbitrary units), as reported in the last row of Table 2. This result can be improved

by combining MRC with an engineering good-sense rule: eliminate the last repair action at MS

k = 20, as it is useless to the continuation of the GT operation. This yield a total cost V = 1300 (in

arbitrary units), in correspondence of an empty warehouse (this solution is indicated in brackets

on the last two rows in Table 2).

The part �ow solution provided by MRC is compared to that provided by the SARSA(λ) algorithm,

whose setting parameters are reported in Appendix. According to (25), these have been de�ned

based on a series of experiments (see Appendix 1), from which it emerged that λ is the most

impacting on convergence. In fact, Figure 2 shows the behavior of the state-action pair value for

the �rst state (i.e., S1= (3,1,0,1)) and the corresponding action taken at the beginning of the

episode, for three di�erent values of λ. From this Figure, we can see that large values of λ yield

fast convergence, whereas setting λ = 0 leads to not converging within 105 episodes. Notice that

the �nal oscillating behaviors of these curves are due to the exploration tasks of RL.
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Figure 2: Convergence of Q(S,A) for di�erent values of λ

The RL algorithm converges after around 104 episodes (Figure 2), in almost 95 seconds on a

2.20GHz CPU, 4GB RAM computer. The optimal policy found is summarized in Table 3, through

the same reading scheme of Table 2 and yields a �nal cost of 1190, in arbitrary units. This is

smaller than that of the MRC policy, i.e., 1300.
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Table 4: Comparison between MRC and RL policies reported in Tables 2 and 3

Number of

Purchasing

Repairs of Parts

with r=2

Repairs of Parts

with r=1

Scrap of Parts

with r>0

Scrap of Parts

with r=0

RL 7 8 1 6 5

MRC 6 5 5 1 9

The comparison of Tables 2 and 3 is summarized in Table 4. From this, we can note that MRC re-

quires a number of purchase actions and repairs of parts with r = 2 smaller than the corresponding

ones of the optimal policy (i.e., columns 2 and 3 of Table 4). This advantage is counter-balanced

by the larger number of repair actions of parts with one remaining cycle (5 for MRC vs 1 for RL),

whose cost is almost equal to that of purchasing new parts (see Table 1). From this, one can be

tempted to conclude that the superior result of new parts RL is due to the scrapping of parts with

RUL r > 0 (see column 5 in Table 4), which avoids repairing parts with r = 1. However, this

conclusion is not right. In fact, on the one hand we can notice that the RL optimal policy may

require to perform repair actions on parts with r = 1. For example, at MS k = 8, the part coming

from GT g = 2 with r = 1 is repaired (see Table 3). On the other hand, if we modify the MRC

policy with the constraint of always scrapping the parts with r = 1, then the total maintenance

expenditures are equal to 1250, in arbitrary units (see Table 5), which still is larger than 1190.

This proves that scrapping parts with r = 1 is not always convenient.

Moreover, the policy of consuming all parts until their RUL r = 0 certainly compromises the

possibility of reaching the optimal part �ow solution: if we apply the RL algorithm in the setting

in which dk > 0 and ak,ρ = 0, ρ ∈ {0, ..., 3}, for k = 1, ..., T , then the �nal maintenance cost is

1290, in arbitrary units (see Table 6), which is smaller than that of the MRC policy (see Table 2),

although it is larger than that of RL (see Table 3). From these considerations, it emerges that a

simple rule cannot be found to optimally manage the part �ow and an optimization algorithm is

required to �nd the most convenient sequence of actions over the service contract duration.

The optimal policy is expected to be dependent on model parameters such as the initial conditions

of the warehouse and the length of the time horizon. The initial warehouse composition depends

on two factors: number of parts and total number of available cycles. To fairly capture the e�ect

on the total costs of the number of parts initially available, we apply RL and MRC to di�erent

compositions of the warehouse, which are such that the sum of RULs available is equal to that in

Tables 2 and 3:
∑3

r=1wr,1 · r = 5. Table 7 shows that the �nal costs are strongly a�ected by the

initial conditions of the warehouse: the larger the number of parts in the warehouse the smaller

the costs, which range from 1190, when there are 4 parts in the warehouse, to 1300, when there

are 2. The RL policy always outperforms that of MRC. Notice also that rows 2 and 3 refer to
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Table 5: MRC policy, scrapping allowed when RUL = 1

k w1,k w2,k w3,k RUL@GTg = 1 RUL@GTg = 2 RUL installed part Repair Purchase Ck

1 3 1 0 2 1 2 Y N 50

2 3 1 0 2 0 2 N N 0

3 3 0 0 1 2 1 N N 0

4 2 0 0 1 1 1 N N 0

5 1 0 0 0 1 1 N N 0

6 0 0 0 1 0 3 N Y 100

7 0 0 0 0 3 3 N Y 100

8 0 0 0 3 2 3 Y Y 150

9 0 1 0 2 3 2 Y N 50

10 0 1 0 2 2 2 Y N 50

11 0 1 0 1 2 2 N N 0

12 0 0 0 2 1 3 N Y 100

13 0 0 0 1 3 3 N Y 100

14 0 0 0 3 2 3 Y Y 150

15 0 1 0 2 3 2 Y N 50

16 0 1 0 2 2 2 Y N 50

17 0 1 0 1 2 2 N N 0

18 0 0 0 2 1 3 N Y 100

19 0 0 0 1 3 3 N Y 100

20 0 0 0 3 2 3 N Y 100

- 0 0 0 2 3 - - TOT 1250

settings in which the number of parts initially available is the same (i.e., 3), with the same value of

cumulated RUL. Nonetheless, the maintenance costs are di�erent. This tells us that the knowledge

about both the total number of parts and the total RUL initially available in the warehouse is not

su�cient to derive the optimal maintenance costs, which, indeed, depend on the overall starting

warehouse composition.

These results are con�rmed when we evaluate the dependence of the costs on the total RUL

initially available. Table 8 reports four di�erent initial warehouse compositions, the �rst three

referring to a warehouse with three parts with r = 1, 2 and 3, respectively. From Table 8, we can

see that the larger the sum of the RUL initially available, the smaller the costs incurred, especially

when we consider the warehouse with new parts. Row 4, instead, refers to the warehouse initially

composed of four parts with RUL r = 1, i.e., one more than those in the �rst row. The total cost

of this scenario, with total RUL initially available equal to 4, is the same as that of scenario 3,

with total RUL equal to 9 and also of the scenario in the �rst row of Table 3, where there are 4

parts with total RUL equal to 5. This con�rms that in the settings here considered, the �nal costs

15



Table 6: RL policy, scrapping allowed when RUL = 0, only

k w1,k w2,k w3,k RUL@GTg = 1 RUL@GTg = 2 RUL Installed Part Repair Purchase Ck

1 3 1 0 2 1 3 Y Y 150

2 3 2 0 3 0 3 N Y 100

3 3 2 0 2 3 1 Y N 50

4 2 3 0 1 2 2 Y N 50

5 2 3 0 0 2 2 N N 0

6 2 2 0 2 1 1 Y N 90

7 2 2 0 1 1 3 Y Y 190

8 3 2 0 3 0 2 N N 0

9 3 1 0 2 2 1 Y N 50

10 2 2 0 1 1 1 Y N 90

11 2 2 0 0 1 3 N Y 100

12 2 2 0 3 0 1 N N 0

13 1 2 0 2 1 2 Y N 50

14 1 2 0 2 0 1 N N 0

15 0 2 0 1 1 2 Y N 90

16 1 1 0 2 0 2 N N 0

17 1 0 0 1 2 1 Y N 90

18 1 0 0 1 1 1 Y N 90

19 1 0 0 0 1 1 N N 0

20 0 0 0 1 0 3 N Y 100

- 0 0 0 0 3 - - TOT 1290

are more sensitive to the number of parts than to the total RUL.

Finally, Figure 3 shows how the length of the time horizon a�ects the di�erence between the

maintenance costs of RL and MRC with respect to the four scenarios reported in Table 7. The

smallest di�erences (i.e., 40, in arbitrary units) are achieved when the total number of MSs is such

that the parts installed on the GTs following the MRC policy have small RUL at the end of the

time horizon, which implies that no parts are left in the warehouse. Indeed, though the MRC

policy is quite good for speci�c values of the contract length, it is always dominated by the RL

policy.
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Table 7: E�ect of the number of parts on costs

Scenario w1,1 w2,1 w3,1
Maintenance Expenditures

MRC

Maintenance Expenditures

RL
Delta

Number of

Parts

1 3 1 0 1300 1190 110 4

2 1 2 0 1390 1280 110 3

3 2 0 1 1350 1240 110 3

4 0 1 1 1440 1300 140 2

Table 8: E�ect of the total RUL on costs

Scenario w1,1 w2,1 w3,1 Maintenance Expenditures
∑
RUL

1 3 0 0 1300 3

2 0 3 0 1280 6

3 0 0 3 1190 9

4 4 0 0 1190 4

4 5 6 7 8 9 10
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Figure 3: Di�erence of maintenance expenditures between MRC and RL for 4 di�erent scenarios

5 Conclusions

This work o�ers a formalization of the GT PFM in the Oil & Gas industry. The problem is of

crucial importance for the pro�tability and the reliability of the GT plants. GT PFM has been

formulated as a SDP and RL has been used for the solution.

Other optimization algorithms such as evolutionary algorithms (e.g., Genetic Algorithms, Di�eren-
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tial Evolution, etc...), dynamic programming or linear programming algorithms, could be adopted

for the speci�c setting considered in this work. However, the choice of model-free RL has a twofold

justi�cation. On one side, RL algorithms allow encoding the aleatory uncertainties, e.g., in the

failure times of the GT parts or in the non-negligible duration of the inspection cycle, more easily

than the other algorithms. On the other side, although here not considered, the complexity of the

real industrial applications requires SDP to encode many additional GT operational aspects, such

as the possibility of inspecting the parts without performing maintenance (i.e., condition-based

maintenance), the di�erent duration of the maintenance intervals for parts of di�erent technolo-

gies, the constraints on the shareability of the parts on GTs with di�erent operation temperatures,

etc. Accounting for these GT operation features requires encoding constraints about the actions

that can be taken in each state, which are really di�cult to set in both evolutionary and linear pro-

gramming frameworks. Another characteristic of real applications is the non-negligible duration of

the maintenance interventions for parts of di�erent technologies, which invalidates the assumption

that the parts removed from the GTs are readily available for the next MS. These features of real

practice lead to the fact that Eqs. (4) and (5) can no longer be used for updating the MS dynamics,

and more complex equations should be found for the speci�c application. On the contrary, RL,

being a model-free method which does not require the knowledge of the updating dynamics, allows

easily encoding the additional features of the speci�c real applications, as it acts on the simulation

of the decision process and, thus, selects actions from those feasible, only. This makes RL easily

integrable with part �ow simulators, as long as action-value approximations techniques are used

to handle the large dimensionality of the action-state space. This issue will be tackled in future

works.

The results of a case study inspired by a real industrial application show that RL �nds PFM poli-

cies with maintenance costs smaller than those derived from experience-based rules (i.e, MRC).

Moreover, the case study shows that the optimal maintenance policy found by RL strongly de-

pends on the initial situation of the warehouse and the length of service contract, which makes not

possible to identify a set of general rules.
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6 APPENDIX

The SARSA(λ) algorithm steps (16) can be summarized as follows:

-Initialize all Qπ(Sk, Ak) = 0, ∀k
while n < N do

-k ←− 1

-De�ne the initial conditions as d1 and S1

-Apply the ε-greedy policy to get A1

while k < T do

-Execute Ak, receive −Ck+1 and observe dk+1 and Sk+1

-Apply the ε-greedy policy to get Ak+1

-Update all Qπ(Sz, Az) visited within the k-th MS according to Eq. (10)

-k ←− k + 1
end

-Update αn and εn
end

- Find optimal policy

To �nd a good compromise between exploration and exploitation, we gradually drop down the

exploration (37), i.e. we use:

εn = ε0 · (Nε0 + 1)/(Nε0 + n) (11)

where ε0 ∈ [0, 1] is the initial value, εn is ε at the n-th episode and Nε0 is the episode at which the

value of εn is almost halved.

Yet, as explained in (38), the larger the value of αn, the faster the agent learns and, thus, the

larger the probability of converging to a sub-optimal solution. To avoid this drawback α has been

set as:

αn = α0 · (Nα0 + 1)/(Nα0 + n) (12)

where α0 is the initial learning rate and Nα0 and αn are the analogous of Nε0 and εn.

Finally, Table 9 reports the values of the parameters used in this work.

Table 9: RL Parameters

ε0 α0 γ λ N Nα0 Nε0

0.1 0.1 1 0.8 1e5 1e4 1e3
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