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ABSTRACT

In this work, we apply Machine Learning techniques to
Hyper-Spectral Images acquired by a Short Wave Infra-Red
(SWIR) Camera, to classify the materials composing the
Solid Recovered Fuel (SRF). This classification, enabled by
data pre-processing techniques, is used to estimate the Lower
Heat Value (LHV) of SRF samples, building on models of the
literature. The accurate and timely estimates of SRF LHVs
yield significant benefits to SRF consumers.

Index Terms— Solid Recovered Fuel, Lower Heat Value,
SWIR, LR-Classifier

1. INTRODUCTION

Solid Recovered Fuel (SRF) mainly consists of combustible
components, including paper, woods, non-recyclable plastics,
textiles, etc., which are selected from municipal, industrial
and commercial solid waste materials.

Nowadays, SRF is largely used in energy intensive produc-
tions, such as cement kilns, waste-to-energy and thermal
power plants. This yields huge environmental benefits, as
SRF ensures energy for industrial processes and domestic
heating, while reducing the global greenhouse gas emission
and providing a complementary solution to the waste recy-
cling priority ([1]).

In addition to the fulfillment of the stringent requirements
defined by environment international standards, SRF is also
expected to meet demanding quality requirements that ensure
the efficiency of the waste to energy conversion and the conti-
nuity of the production ([2], [3]). For example, to increase the
energy production efficiency, we need to reduce the fluctua-
tions in the SRF energy release rate, thus avoiding the abrupt
changes that challenge the heating process control [4]. Yet,
to both avoid the corrosion of the plant components and pro-
duce high quality cement, we must avoid high concentration
of chlorine in SRF. From this, it clearly emerges that accu-
rately estimating the main characteristics of the SRF such as
the Lower Heat Value (LHV), humidity, quantity of chlorine
and mercury, considerably increases the market value of the
SREF, as these pieces of information are relevant for the SRF
consumers.

With respect to LHV, which is the focus of the present work,
in the current industrial practice it is experimentally estimated

through standardized procedures (REF?? ISO), which rely
on bomb calorimeters applied to small SRF samples. These
procedures require time-consuming laboratory work [2], and
provide untimely (typically after a few days) results affected
by sampling uncertainty, which is estimated according to the
applicable standard guidelines.

On the other hand, empirical models have been proposed in
the literature (e.g., [5]) to predict the LHV of SRF. Although
these models avoid the manual work [5], they, however, re-
quire the estimation of the SRF composition. In this respect,
several studies (e.g., [6]) have recently proved that the anal-
ysis of Hyper-Spectral Images (HSIs) can be successfully
fostered to identify the different composing materials, in sup-
port to solid waste recycling and treatment.

Based on these results, we developed a prototype tool to esti-
mate the LHV of SRF. This relies on a material classification
algorithm of HSIs acquired from a Short Wave Infra-Red
(SWIR) camera, which feeds an ensemble of models of the
literature that provide LHV estimates. The developed tool
can work in real time, thus providing timely estimations of
the LHV that relate to all the SRF. This avoids the sampling
procedure and the related statistical uncertainty.

The paper is organized as follows. In Section 2, details on
the SWIR technology are provided. In Section 3, we describe
the campaign carried out to gather both the training and the
test data. In Section 4, details on the Machine Learning (ML)
techniques developed to classify the material are provided,
together with a brief discussion of the literature models used
to link the material classification to the LHV estimations. Re-
sults of the application of the methodology to SRF samples
are presented in Section 5. Finally, conclusions are outlined
in Section 6, which also presents the future research and
deployment work for the industrial scale up of the proposed
prototype solution.

2. HSI TECHNOLOGY

HSI, also referred to as chemical or spectroscopic imaging,
is an emerging non-destructive technique providing accurate
and detailed information about the analysed objects [7]. HSI
combines the 2D spatial information retrievable from digi-
tal cameras with the 1D spectral information retrievable from
spectrometers. This twofold perspective, organized in a 3D
tensor called ‘hypercube’, allows linking the attributes of each



pixel to the chemical-physical characteristics of the material
present therein [8].

2.1. SWIR Camera

Raw data were acquired with hyperspectral SWIR camera
model FX17, produced by Specim Spectral Imaging. The
camera is based on the push-broom technology and features
a spatial resolution of 640 pixels and a spectral resolution of
224 bands. The wavelength range spans from 900 to 1700
nm. Spectral sampling is 3.5 nm/pixel and Full Width at Half
Maximum is around 8 nm. Spatial and spectral distortions,
known as smiley and keystones, have been compensated to a
value well below a single pixel.

Light is provided by two linear halogen lights, each made
up of three 20 W bulbs and a reflector with 36 degrees of
aperture. To provide uniform light also on rough and non flat
objects, the linear lights were installed in bright light config-
uration, symmetrically with respect to the optical axis. In this
setting, the resulting Signal to Noise Ratio is around 1000:1
for most of the spectral range.

The materials to be scanned were placed on a 200 mm x
400 mm moving plate. Pixel size on the sample was 0,30
mm. The dimension of the hypercube obtained by scanning
the plate acquiring a sequence of around 1200 frames is
640x1119x224.

The speed of the plate and the frame rate of the camera were
tuned to keep the aspect ratio of the scanned objects. For each
scan, we acquired:

* a white reference signal W, averaged over 100 frames
on a spectralon reference target;

* adark reference signal D, averaged over the same num-
ber of frames obtained by closing the mechanical shut-
ter of the camera.

3. DATA COLLECTION CAMPAIGN

The data collection campaign was organized into two parts.
First, we prepared the training dataset: a collection of ob-
jects of different known materials, used to build the library to
train the classifier. Specifically, we gathered commonly used
objects like Polyethylene Terephthalate (PET) bottles, dif-
ferent types of packaging (PolyproPylene (PP), Low-Density
PolyEthylene (LDPE), Polystyrene (PS), cardboard, etc.),
cork, High-Density PolyEthylene (HDPE) and metallic tops,
different types of papers, pieces of different textiles (e.g.,
cotton towels, wool dresses, polyester shirts, Nylon, etc.),
samples of rubbers, PolyVinyl Chloride (PVC) pipes, to cite
a few. These were characterized by different morphological,
geometrical and color attributes.

Then, we prepared the test data: a total number of 36 2-kg
samples of SRF collected from the a2a SRF production plant
in Cavaglia (Italy). For each SRF sample, a calorimeter test

was performed to measure the LHV, which was compared
with the values obtained from the application of the LHV
estimation model to the material classifier estimations. No-
tice that multiple hypercubes were generated from the each
SRF sample, as the area covered by the SRF sample material
exceeds that of the scanner.

Figure 1 shows some known objects from the training library
(left) and an example of scanned SRF (right).

Fig. 1. Left: example of known object used to create the spec-
tra training library. Right: examples of a test SRF sample.

4. ANALYTICS DEVELOPMENT

The developed analytics can be divided into three groups:

* Pre-processing, aimed at highlighting the information
content of the acquired HSIs;

* Classifier, aimed at selecting the features of the HSIs
that best allow distinguishing the different materials.

* LHV estimation, aimed at linking the classified materi-
als of the SRF samples to the corresponding LHVs.

All the analytics have been developed in Python 3.7 en-
vironment, adopting standard libraries for ML (Scikit-learn,
Spectral Python, Pandas, etc.) and hyperspectral data tech-
niques ([8]).

4.1. Pre-processing

Different pre-processing are applied to hyper-spectral data.
Namely, we first perform instrument calibration by applying
the following equation:




where R is the calculated reflectance and I is the measured
reflectance of the raw image [8].

After calibration, the Standard Normal Variate (SNV) algo-
rithm (e.g., [9]) is used to reduce the scaling effects due to
differences in signal path-length, scattering, and other effects
related to the high sensitivity of the instruments to the varia-
tions of source and detector settings [8].

Background removal filter is then applied to eliminate the non
informative pixels of the image. To do this, we applied a
threshold value to the mean of the normalized signal, as back-
ground pixels are characterized by flat, low values spectra.
Finally, light reflections are removed by threshold filtering:
the saturated spectra are characterized by flat high signals
along all the wavelength.

Figure 2 shows the shapes of the pre-processed HSY (HSI)
spectra of different materials, characterized by specific local
minima at different wavelength. The spectra training library
include ten thousand spectra from all the known objects col-
lected.
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Fig. 2. Example spectra of materials.

4.2. Classifier

To build the material classifier, we first performed a feature
extraction and selection procedure. Namely, we considered
the first derivative of the spectra, which emphasizes the in-
formational content of the wavelength ranges of spectra local
minima. Then, we applied the Uniform Manifold Approxima-
tion and Projection (UMAP, [10]) for dimensionality reduc-
tion. This allows visualizing on a 2D space material spectra
clusters (Figure 3). We can see from Figure 3 that sam-
ples characterized by similar spectra are clustered in the same
region, which also correspond to materials of similar LHV
values. These considerations allowed building a n = 8 class
training library: cellulose (paper, wood, cork, fabric), rubber,
PE, PET, Polyurethane, PP, PS, PVC.

Logistic Regression (LR, e.g., [9]) was selected as clas-
sifier of the labelled data of the training library, by reason of
performances and simplicity. Therefore, once the classifier is
obtained, it can be applied to an entire new hypercube of SRF
for the classification of every image pixel.

UMAP results
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Fig. 3. UMAP results

Figure 4 shows the confusion matrix of the leave-one-group-
out (LOGO) cross-validation (e.g., [9]) of the LR classifier
trained on the SWIR spectra library. We set a probability
threshold for classification of 0.9. That is, pixels with a class
prediction probability smaller than 0.90 are assigned to a
dummy class (not reported in Figure 4).

From Figure 4, we can see that all the materials in the library
are well distinguished from one another, except for the class
“rubber”. This is mainly due to the complex composition of
the rubbers (e.g., they often include PVC).

LOGO confusion matrix
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Fig. 4. Confusion matrix



LHV min | LHV max

[MJ/kg] [MJ/kg]
Rubber 25.6 46
Cellulose 17 21
PET 19 28
PP 42.6 46.2
PS 28.9 42
PVC 15 21
PE 34 46.2
Polyurethane 30 38

Table 1. LHVs for each class. LHV min is the minimum
value in the literature, LHV max is the maximum.

4.3. Mapping SRF onto LHYV estimations

The LHV of each SRF sample is estimated as the weighted
mean of the LHVs of the different materials, the weigths
being the percentage estimated by the classifier. The material
LHVs have been derived from the literature ([11, 12], Table
D).

We use the following model to estimate the SRF sample
LHVs:

LHViampte =y LHV.P. + C¢Ppe
c=1
2emy LHVCP:
>e1 Pe
where P, is the percentage of class ¢ = 1, ..., n, considering
prediction probability larger than 0.9. In words, pixels with

a prediction probability smaller than 0.90 are assigned a cor-
rection factor C’y.

Cr=

5. RESULTS

The model trained on the SWIR spectra library is applied to
the HSIs of the gathered SRF samples. This allows assigning
a material class to each pixel and, thus, estimate the percent-
age of each material in the sample. However, in this case we
do not have ground truth labels to check the performance of
the classifier, although we have calorimeter measurements for
the samples.

An example of SRF classification results is reported in Fig-
ure 5. There, we can see that the object borders are clearly
identified on the image, which is a rough confirmation that
the classification capability.

Once all the pixels are classified, the LHV values are esti-
mated from the percentage of each class present in the HSI.
The pixels composing the dummy class are usually associated
with shadowed or dirty areas, thin transparent plastics, black
fabrics and plastics.

Figure 6 shows the prediction of the LHV for each SRN sam-
ple. Due to the high variability of the literature LHV data

(Table 1), the range bar of predicted LHV is given to visualize
the uncertainty on the estimations. The maximum (minimum)
LHV value corresponds to considering the maximum (min-
imum) LHV literature value collected for each of the eight
classes. The red dots are the LHV values of the calorimeter
test. An accuracy of 72% is achieved, considering the portion
of the predicted LHV range containing the calorimeter LHV
estimations. There are some cases where the predicted range
and the target value differ significantly (i.e., sample 13, 32
and 33). These will undergo specific analysis to understand
the causes, which include the influence of not tracked external
factors (humidity, weather condition ...).
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Fig. 5. Example of classification of SRF hypercubes.

6. DISCUSSION AND CONCLUSION

The aim of the present work was the development of a pro-
totype tool for the estimation of the LHVs of the SRF, which
overcomes the limitation of the gold standards techniques
(i.e., calorimeter test). Specifically, we estimate the SRF
material composition through a classifier applied to HSIs
gathered form a SWIR camera and then map this into LHV
estimations.

The results of the study are promising, although additional
research work is required for the industrial scale up of the
solution. Specifically, to improve the model, a wider library
of ground truth material objects will be created, to enhance
the classification capabilities. Yet, additional SRF calorime-
ter tests will performed, to reduce the uncertainty in the final
LHV estimations. This uncertainty is also due to external
factors, which can influence the LHV estimations. To encode
them in the prediction model, an extensive campaign for SRF
samples acquisition, scanning and calorimeter measuring will
be carried out, which will enable the development of data-
driven solutions to improve the LHV estimations.
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Fig. 6. HV results for each SRF sample. Black vertical lines represetn the estimated HV values,
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calorimeter HV. Some outliers are present and need a more detailed analysis to be corrected.

Moreover, the overlap among SRF pieces make the SWIR
camera not able to scan all the material spectra, but those
on the surface, only. To sidestep this issue, a SRF samples
will be scanned multiple times, thus generating different
hypercubes, each time mixing up the SRF pieces.
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