
ACRONYMS AND SYMBOLS 

AGAN As Good As New 

CM Corrective Maintenance 

MSS Multi-State System 

PM Preventive Maintenance 
i

ja  j-th action applicable to component Ci, j=1, …, L+2 

ai Vector of actions 
i
ja  

Ai Action taken on component Ci 

A Vector of actions taken on the MSS 

Ci    i-th component, i=1,…, N 

CCM Cost of corrective maintenance, in arbitrary units 

CPM Cost of preventive maintenance, in arbitrary units 

d Index of the degradation process, d=1,… Di 

Di Number of degradation processes affecting Ci 

Fi Performance level of Ci 

i

jF   Performance value associated to action
i

ja , in arbitrary units 

G  Expected return from following policy π, in arbitrary units 

G  Return from following policy π, in arbitrary units 

L Number of load levels 

N    Number of MSS components  

Q  Action-value function from following policy π, in arbitrary units 

r Reward, in arbitrary units 

S Set of states of the MSS 

Si Set of states of component Ci 
i

ds  State of degradation process d affecting component Ci 

si Vector containing the states 
i
ds  
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ABSTRACT: We develop a decision support framework based on Markov Decision Processes (MDPs) to max-

imize the profit from the operation of a Multi-State System (MSS). This framework enables a comprehensive 

management of the MSS, which considers the maintenance decisions together with those on the MSS operation 

setting, i.e., its loading condition and configuration. The decisions are informed by a condition monitoring 

system, which estimates the health state of the MSS components. The approach is shown with reference to a 

mechanical system made up of components affected by fatigue.  



i

dS  Failure state of component Ci with respect to degradation process d 

 t    Time instant, in arbitrary units 
i

jT  Transition matrix associated to action 
i

ja  

i
T  Transition matrix associated to action Ai 

U Performance of the MSS, in arbitrary units 

V  Value function from following policy π, in arbitrary units 

W Production requirement, in arbitrary units 
i

jz  Binary variable indicating the action 

zi Vector of the binary variables 
i
jz  

γ Discount factor 

Γ Reward function, in arbitrary units 

π Generic MSS management policy 

π* Optimal policy 

 

1 INTRODUCTION 

Multi-State Systems (MSS) (Ding & Lisniansky, 2008; Liu et al., 2015; Wijnmalen and Hontelez, 1997; 

Zille et al., 2011) such as aircrafts (Hopp and Kuo, 1998), power grids (Bian and Gebraeel, 2014), water distri-

bution networks (Shinstine et al., 2002), natural gas distribution systems (Wang et al., 2011), Navy Frigate 

(Tinga  and Jannsen, 2013) are made up of interdependent elements working together to fulfill the system 

functions (Haurie and L’Ecuyer, 1982). 

One interesting characteristic of MSSs lies in their reconfiguration capability: the loading conditions on 

some components can be changed in order to optimally respond to diverse operational settings, which depend 

on both internal (e.g., health state of the components) and external (e.g., working load) factors. For example, to 

operate a water distribution system while a pump is undergoing maintenance, it is possible to compensate the 

missing pumping rate by uploading other pumps in the system.  

If the MSS is properly managed, considering also the impact of its configuration settings on the components 

failure behaviors (Wang and Chen, 2016), the MSS flexibility and adaptability to the operating conditions can 

result in a more safe, reliable and profitable operation. For example, (Harlow and Phoenix, 1978) showed that 

in bundles of fibers, the failure of some fibers causes overloads on the remaining ones, which finally results in 

an acceleration of the overall system failure. 

Different approaches have been proposed to manage the operation of an MSS. For example, a multi-agent 

approach is developed in (Trappey et al., 2011) to maximize the profit and the reliability of a power transmission 

network, whereas (Hopp and Kuo, 1998) use Markov Decision Processes (MDPs, Sigaud and Buffet, 2010; 

Sutton and Barto, 1998) to address a maintenance management issue on aircraft engine components that are 

over-stressed by the overloading conditions led by severe turbulences.  

Nowadays, the optimal management of an MSS can benefit from the application of Prognostics and Health 

Management (PHM) methods to detect, diagnose, and predict failures of components and systems (Baraldi and 

Zio, 2015; Sharp et al., 2015; Jardine et al., 2006; Zio, 2012). In principle, PHM allows for a significant reduc-

tion of the system unavailability through an efficient and agile maintenance management, capable of providing 

the right part to the right place at the right time, together with the necessary resources to perform the mainte-

nance task (Compare and Zio, 2013; Grall et al., 2002; Pipe, 2008). Although it seems evident that PHM can 

contribute to the profitable management of a MSS, to the authors’ best knowledge only a few works investigate 

how and to which extent. For example, (Zonta et al., 2014; Pozzi et al., 2010; Memarzadeh and Pozzi, 2016) 

have developed methods within the Partially Observable Markov Decision Process framework to estimate the 

value of the information provided by a PHM system installed on civil infrastructures, which also account for 

the uncertainty in the condition monitoring system outputs. However, the focus of these works is mainly on 

single components and does not consider the management of the system configuration. Rather, the objective of 

these works is to optimally set the inspections, in order to maximize their value of information. 

On the other side, the application of MDP to maintenance optimization issue is not new. For example, (Pa-

pakostantinou & Shinozuka, 2014a), (Papakostantinou & Shinozuka, 2014b) and (Papakostantinou & Shino-

zuka, 2014c) develop POMDP-based methods to optimize maintenance and inspection policies on corroded 

structures. (Chan & Asgarpoor, 2006) propose MDPs for scheduled maintenance optimization on a generic 



component affected by both random failures and failures due to deterioration. (Nielsen and Sørensen, 2014) 

compare MDPs to other approaches to maintenance decision making for wind turbines (for a review of the 

applications of MDPs to wind turbine facilities maintenance optimization, the interested readers can refer to 

(Dawid et al. 2015)). However, these works are concerned with single components, only, and cannot treat the 

management of a MSS, which requires accounting for the mutual interactions among the components and their 

settings. 

Against this backdrop, we present here a study to support maintenance decision making in a setting where a 

condition monitoring system informs the decision maker about the health states of the MSS components. Ac-

counting for this information, the optimal policy for managing the MSS working configurations, i.e. that which 

maximizes the MSS operation profit, is found.  

For this, MDPs are used because of the ease of encoding the aleatory uncertainty of the degradation behaviors 

of the MSS components in the decision problem, which is not given by other optimization algorithms such as 

the evolutionary algorithms (e.g., Genetic Algorithms, e.g., Mitchell, 1998; Zio, 2009) or linear programming 

algorithms (e.g., Fang and Puthenpura, 1993).  

The remainder of the paper is organized as follows. Section 2 presents the problem of interest; Section 3 

proposes an MDP-based method; Section 4 is dedicated to the description of a case study in which we apply 

MDP to a MSS made up of 2 components; Section 5 provides the results to the case study; finally, Section 6 

concludes the work. 

2 PROBLEM STATEMENT 

2.1 Degradation model of the MSS 

 

Consider a MSS, which is made up of N components Ci, i = 1, …, N, arranged according to the given structure 

function. 

Every component Ci is affected by Di independent degradation processes, which are individually modeled 

as multi-state Markov processes (Lisniansky and Levitin, 2003; Lisniansky, 2016), with 
i

dS  states each, d = 1, 

…, Di.  

The overall state of component Ci at time t is given by vector si(t) =  i

D

i
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Vectors si(t), i = 1, …, N, are concatenated to form the MSS health state vector 
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Ni SSt ,...,1)( s , whose 

k-th element is:  

*)( i

qkk sts  ,   


j

i

i NjkDji
1

* ,min  





 

  

otherwise              0

1 if    
*

1

*i

i

i iD
q  

with S indicating the set of all the possible MSS states. 

We assume that component Ci fails when any of its Di degradation processes reaches its last state 
i

dS , d = 1, 

…, Di, i = 1, …, N.  

2.2 Management options for the MSS 

 

With respect to maintenance, we consider two types of actions: Preventive Maintenance (PM) actions, which 

are performed before component failure, and Corrective Maintenance (CM) actions, which are performed upon 

failure. The corresponding downtimes are considered as random variables obeying probability density functions 

(pdfs) 
p

f  and 
c

f , respectively. These distributions are such that the downtime of a PM action is expected to 



be shorter than that for CM: on the one hand, preventive actions avoid the failure propagation to other compo-

nents, thus limiting the severity of the failure effects and the troubleshooting activities. On the other hand, PM 

enables performing timely arranged preventive actions, for which all the maintenance logistic support issues 

have already been addressed. 

In an opportunistic view, we assume that both preventive and corrective maintenance actions restore the 

component to an As Good As New (AGAN) state with respect to all its degradation processes. 

As mentioned before, we consider the situation in which the MSS components are continuously monitored 

and the system health state, s(t), is perfectly known (i.e., with no uncertainty) at every measurement acquisition 

time t=1, …, in arbitrary units. This information guides the decision about whether to take the action of per-

forming maintenance or not.  

Beside the actions relevant to maintenance, additional actions can be taken, which concern the setting of the 

operating performance of the components. Specifically, we assume that every component Ci, i = 1, …, N, can 

be operated at L different levels, which are associated to operating performance values ,,...,1
i

L
i FF  where 

i

l

i

k FF   

if lk   (e.g., the production rate, the absorbed load, etc.). Furthermore, 
i

LF 1  and 
i

LF 2 are the performance 

values associated to preventive and corrective maintenance, respectively, and they are typically set to zero: 

0i

jF    if j=L+1, L+2. 

Hence, the operating level of component Ci is indicated by  i

L

i

L

i

L

ii FFFFF 211 ,,,...,  , i=1, …, N. 

The possible actions that the decision maker can take for component Ci are organized in vectors ai, i = 1, …, 

N: 
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where 
i

ja , j=1, …, L refers to setting component Ci at the operating level 
i

jF , whereas the last two actions 

correspond to the decisions of preventively maintaining and repairing upon failure component Ci. 

The action taken for component Ci is indicated by vector zi, which encodes the binary variables 
i
jz , j = 1, 

…, L+2, i = 1, …, N: 
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The actions are mutually exclusive and exactly one out of the L+2 alternatives has to be taken for the i-th 

component: 
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The state of the component determines the actions that can be actually taken. Specifically, if component Ci 

is not failed, then it is able to work at any of the L possible load levels and any action can be taken on Ci except 

corrective maintenance, which requires the unit to be failed. 

Formally, the constraints on the applicability of the actions are expressed as:  
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Notice that in the considered model setting, the component performance is not influenced by the degradation 

level. Nonetheless, this relationship can be encoded through additional constraints. For example, to model that 

heavily degraded components cannot be operated at the highest performance levels, we can consider constraints 

such as: 
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which prevent running the i-th component at the two highest performance levels when any of its degradation 

mechanisms is in one among the three most degraded states. 



The action taken by the decision maker for the MSS is represented by vector A=[A1, A2, …, AN], whose i-th 

entry is given by the scalar product: 
iiA za

i   

A deterministic policy π is a mapping function between state Ss and action A: 

A = π(s) 

It is worth noticing that the decision about the action to be taken depends exclusively on the current system 

health state and not on time, being the degradation mechanisms described as Markov processes, i.e., memor-

yless processes for which the future evolution does not depend on the past but only on the present state. This 

explains why the time index is missing for the actions, i.e., A = π(s) = π(s(t)). 

2.3 Degradation evolution 

 

Following policy π, an action is performed on every component at each decision time t and, consequently, a 

state transition occurs. The aleatory uncertainty in the consequence of action Ai is described by the transition 
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 whose d-th block,
i

dj ,T , is the 
i

d

i

d SS   matrix containing the transition probabilities describing the evolution 

of the d-th degradation process in response to the selected action Ai, d=1, …, Di, j=1, …, L+2, i = 1, …, N. 

Namely, the entry ))1(),(( tsts i
d

i
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The Di degradation processes are independent on each other; then, the probability of having a transition from 
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This definition is scaled up to the entire MSS for defining the probabilities that the MSS state at time t, s(t) 

changes to s(t+1) at the following time step, t+1, in response to action A as: 
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where, for simplicity, we are not considering the possible influences of the actions on one component on the 

degradation processes of the other components. 

The performance U of the overall MSS depends on both the performance levels iF  of its components, i=1, 

…, N, and the MSS logic of operation. Then, action A yields the MSS performance: 

)(),...,( 1
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Obviously, larger performance levels entail larger loads and stresses and, thus, faster degradation paths. 

2.4 Reward function 

When action A is taken in state s(t) and the MSS has a transition in state s(t+1), a reward r(t) is gained, 

which indicates how good the decision is to reach a pre-fixed goal (e.g., the operation profit): 

r(t)= Γ(s(t), A, s(t+1)) ∈ ℝ. 



Functions f and Γ are specific of the case study considered. 

The operation return of policy π is the value of the rewards gained from time t on:  
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where γ is a discount factor, which determines the net present value of the future rewards (Sutton and Barto, 

1998; van Otterlo, 2012). 

Notice that the rewards depend on the actions taken and on the states between which the transitions occur, 

rather than on time, whereas the return value depends on both the policy adopted by the decision maker (i.e., 

the action to be associated to every state) and the stochastic evolutions of the degradation processes affecting 

the components. Therefore, to take into account the aleatory uncertainty in the degradation evolution from any 

initial state os  under policy π, we focus on the expected return: 
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where  E  indicates the expectation operator given that policy π is being followed. 

In our setting, we assume that an income is gained only when the action taken enables the MSS to reach a 

performance value U larger than a pre-fixed level W, whereas costs are incurred when the action taken results 

in the MSS undergoing maintenance.  

From the considerations above, it clearly appears that our objective is to find the optimal policy π* (i.e., the 

management of the MSS configuration), which maximizes the profit deriving from the operation of the MSS: 

ss
A

   )max(arg)(*
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3 MARKOV DECISION PROCESSES 

To find the optimal management policy regarding the MSS working configuration, we rely on Markov De-

cision Processes (MDPs), which require the definition of states, actions, transition probabilities and rewards 

introduced in the previous Section. 

In the MDP framework, we want to estimate the value )),(( As tQ  of each state-action pair, which measures 

the expected return starting from state s(t), taking action A and thereafter following policy π (Sutton and Barto, 

1998; van Otterlo, 2012): 
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According to Bellman equation, this can be written as (Sutton and Barto, 1998; van Otterlo, 2012): 
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where Vπ(s(t)) specifies the expected return when starting from s at time t and following policy π thereafter, 

also denoted as the value of state s(t). Notice that both the value )(* sV  and state-action pair ),(* AsQ  depend 

on state s, rather than on time t. 

To efficiently solve the Bellman Equation, we rely on the Value Iteration algorithm described in Appendix 

1 (Sutton & Barto, 1998). This belongs to the dynamic programming algorithms family, which exploit the direct 

knowledge of the transition matrices. These algorithms, however, suffer from two main limitations:  

 There may be cases in which the knowledge of the environment where decisions are taken does not 

justify the assumption of perfect knowledge of the transition matrices. In this case, sample-based 

Reinforcement Learning techniques must be applied (Sutton and Barto, 1998). 

 Dynamic programming algorithms are affected by the curse of dimensionality issue: when the state-

action space becomes very large, the computational burden is prohibitive. In this respect, (Mansour 

& Singh, 1999) and (Littman et al., 1995) analyze the complexity of the dynamic programming algo-

rithms and, thus, give the bounds of their applicability to practical case studies To scale up, it is 

necessary to resort to complex value function approximation techniques. 

Both issues will be tackled in future research work. 

The readers interested in additional theoretical details on MDP can refer to (Sutton and Barto, 1998), (van 

Otterlo, 2012).  



4 CASE STUDY 

4.1 Degradation model of the MSS 

Consider a MSS made up of N=2 identical pumps arranged in parallel configuration, whose design function is 

to supply the demanded flow rate. 

Both components are subject to a single degradation process (i.e., D1 = D2 =1), which is fatigue. This deg-

radation process is discretized into 151 
iS  states, i = 1, 2, with state 11 

is  corresponding to the As Good As 

New (AGAN) state and state 151 
is  to the failure of the component. Then, the set of all the possible MSS 

states, S, contains 225 states. 

Given that only one degradation process affects the two pumps, the state vector si reduces to a scalar, which 

will be denoted as si. 

4.2 Management options for the MSS 

Each pump can be operated at L=3 possible flow rate levels, therefore: 

 iiiii aaaaa 54321 ,,,,i
a  i =1, 2. 

where, 
ia1  and 

ia2  correspond to setting the pumping rate 101 iF  and 12 iF , in arbitrary units, respec-

tively; 
ia3  corresponds to the pump switch-off with 03 iF , whereas 

ia4  and 
ia5  correspond to the PM and CM 

actions, respectively, which are associated to a null pumping rate. 

4.3 Degradation evolution 

In case of 
ia1  and 

ia2 , i=1, 2, the pump degradation mechanism evolves through stochastic paths that depend 

on the pumping rate and, thus, on the working load. Being the pumps affected by a single degradation process, 

a 1515 transition matrix i
T , i=1, 2, is associated to each action, whose (h,k) entry gives the probability of 

having a transition from state hs i 1  to state ks i 1 , when action 
i

ja  is taken. 

The values of 
i

jT , j=1, 2, have been derived by applying the procedure described in Appendix 2.  

Notice also that the last row of 
i

1T  and 
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2T  is set to 0 because it is not possible to take actions 
ia1  and 

ia2  

while component Ci is in state 151 
is , i=1, 2. 

Choosing action 03 
ia  results in no flow delivered by pump i and, thus, no load exerted on the pump. Then, 

the degradation process does not evolve and, consequently, IT i

3 . 

The non-zero elements of 
i

4T  are those on the diagonal, which represent the probability values that the 

maintenance action is not completed within the reference time unit 1t , and those on the first column, which 

are the probabilities that the pump exits the maintenance action within the time unit tt  , in the AGAN state 

(see Appendix 2). The values of 
i

4T  have been estimated by assuming that 
p

f  is an exponential distribution 

with repair rate 
p

  = 0.7, which gives .5.0
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As for actions 
ia1  and 

ia2 , the values of the last row of matrix 
i

4T  are all zeros, because the PM action is not 

applicable when component Ci is failed. 

Finally, CM can be implemented only upon failure of the pump; then, the elements of 
i

5T  that are different 

from 0 are the first and last elements of the last row only, which define the probability of ending the CM action 

in the time unit and its complement to 1, respectively. The entries of 
i

5T  have been derived by assuming that 

c
f  is an exponential distribution with repair rate 

c
 = 0.1. 



4.4 Reward function 

Concerning the objective of the MSS, the two pumps have to supply a flow rate of at least W=11, in arbitrary 

units. Given that the pumps are set in parallel configuration, the overall output of the MSS is assumed to be the 

sum of the single pump outputs: 
2121 ),( FFFFfU   

The threshold value W=11 requires both components to be working to not incur into loss of production. 

Obviously, flow rate Fi is delivered by pump i only if the state entered at the next time step is not a failed 

state, i.e., 15)1( 1  ii Sts .  

The MSS configurations ensuring that U≥W are those corresponding to the setting: 
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This means that the pumps must not be running at the lowest levels at the same time. In this case study, when 

Eq. (1) is verified, that is when the flow rate provided by the MSS is at least equal to W, the reward function is: 
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where I=10 is the income for a t  of operation, whereas O=1 is an additional benefit that is gained when 

both components operate at the highest pumping level, whereas Bi, i=1, 2 are Boolean variables such that: 
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Moreover, we assume that the cost of maintenance is paid only upon completion of the activity. Therefore, 

when a maintenance action is implemented, its cost is not paid till the pump is restored in its AGAN state. 

When Eq. (1) does not hold, the reward function becomes: 

))1),1((()()(
1 1

2 
 

 
N

i

i
N

i

i
LCM

i tszCFWPtr  


 
N

i

ii

LPM tszC
1

1 ))1),1(((  2121( CMPMPMPM zzzzSyn   

 
i

i

PMCM tszz )1),1(()21   

where P = -15 is a penalty that is incurred when the flow rate requirement W=11 is not delivered, 80CMC  

is the cost, in arbitrary units, to perform a corrective action, 40PMC  is the cost to perform a preventive action, 

whereas 10Syn  is the saving, in arbitrary units, owing to the synergy of performing maintenance actions at 

the same time on both components. Finally, δ is the Kronecker delta function: 
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 if  1
),(

ba
ba  

For example, if  2

2

1

1 ,aaA , then the reward r(t) is 10, whereas when both pumps deliver a low flow rate, 

i.e., 1iF , i=1, 2, r(t) is -24. Yet, the rewards r(t) for actions  2
4

1
4 ,aaA ,  2

5

1

4 , aaA  and  2

4

1

5 ,aaA  are 

equal to -96, -136 and -136, respectively. 

Finally, a discount factor γ=0.99 is chosen to calculate the return G. 

5 RESULTS AND COMMENTS 

The optimal policy for the case study described above has been found by solving the MDP through the algorithm 

reported in Appendix 1, with a tolerance for convergence ε=10-4. This took 270 seconds on an 8GB RAM 

machine, running an Intel Core i-7 processor @ 2.20 GHz. In this respect, notice that the computational times 

fast increase with the dimension of the state space, whereby other Reinforcement Learning algorithms need to 

be developed to address more complex case studies.  

The optimal policy found is analyzed and validated by comparing its results with those of two traditional poli-

cies:  

 π1, the pumps work at the highest load level and undergo scheduled maintenance actions.  

 π2, the pumps work at the highest load level, with corrective maintenance only. 



For all three policies (i.e., π*, π1, π2), we have performed 107 Monte Carlo (MC) simulations of 103 time steps 

each, to estimate the corresponding return, starting from the initial state, s0= ],[ 2
1

1
1 ss , in which both pumps are 

in the AGAN state.  

Notice that the length of the time horizon for MC simulations has been set to 103 time steps, as it ensures that 

the weight given by the discount factor γ is such that the rewards collected from that point on are negligible. 

This setting on the time horizon is also validated by the fact that the expected profit of *  given by 

922]),[( 2
1

1
1*  ssV os


 is almost equal to that estimated through the MC approach (i.e., 923). This proves that 

the contribution of the costs after 103 time steps is negligible. Furthermore, MC simulations allow us assessing 

the variability of the return Gπ of every policy, in order to appraise the variability in the results obtained by 

applying the same policy π. 

For policy π1, we have estimated the expected return 1G  for different values of the preventive maintenance 

intervals, in order to find its optimal value (Figure 1). As it can be seen from Figure 1, the time interval that 

maximizes the return 1G  is 45, in arbitrary units. Notice that the scheduled preventive maintenance actions 

are performed independently on whether the component has failed and correctively repaired between two con-

secutive scheduled actions. 

 
Figure 1 - Expected return for policy π1 under different scheduled maintenance time intervals. 

Figure 2 shows the expected return G  for the three considered policies, together with the corresponding 

interval  


  GG GG  , , where the standard deviation refers to the values of Gπ, and not to those of its 

estimator G . From this Figure, we can see that the expected return *G  for the optimal policy π* is the largest 

among the selected policies. Yet, the expected return 1G  for the schedule maintenance policy π1 is larger than 

that of policy π2, 2G  (Figure 2). This is mainly due to the synergy arising when performing preventive mainte-

nance on both pumps, which reveals a better management strategy than that of running the components to failure 

and repairing them after the fact. 

 



 
Figure 2 - Expected return for the selected policies 

 

5.1 Characteristics of the optimal policy 

Figure 3 shows the average number of times that the different actions have been taken throughout the Monte 

Carlo simulations when the MSS is obeying the optimal policy π*. We can see that the additional benefit gained 

when both components run on high load (see Eq. (2)) is not large enough to justify the choice of this action for 

the whole time horizon. Indeed, the most frequent action (i.e.,  2
2

1
1 ,aaA ,  2

1
1
2 ,aaA , which corresponds to 

U=11) allows the MSS fulfilling the requirement W and, thus, avoiding penalties while degrading in a slower 

way compared to that of the setting in which both pumps are delivering the largest flow rate (i.e.,  2
1

1
1 ,aaA ). 

 

 
Figure 3 - Number of times that actions are taken during the life of the MSS for the optimal policy π*. 

Figure 4 and Figure 5 allow comparing the results of Figure 3 with the corresponding ones of policies π1 and 

π2, respectively. As expected, the most frequent action in both cases is  2
1

1
1 ,aaA  (i.e., largest flow rate level 



on the pumps), which leads to a very fast degradation and, thus, to a number of corrective activities larger than 

that of π* (i.e., actions      2
1

1
5

2
5

1
1

2
5

1
5 ,,,,, aaaaaa  AAA ), especially in case of π2.  

Obviously, policy π1 requires performing a number of PM actions (i.e.,  2
4

1
4 ,aaA ,  2

4
1
1aaA  and

 2
1

1
4 ,aaA ), which allow reducing the number of corrective interventions, as it is confirmed by Table 1. This 

reports the average total number of maintenance actions carried out for the different policies: if we compare π1 

and π2, we can see that the total number of maintenance actions in π1 is almost 50% of that of π2. This means 

that preventive actions are strongly beneficial for the profit of the MSS operation.  

The optimal policy π* requires the smallest number of maintenance activities, the most of which being pre-

ventive actions: this highlights that the optimal management of the MSS yields a reduction of maintenance costs 

because the total number of actions is minimized, while avoiding the large downtimes due to corrective actions. 

 
Figure 4-Number of times that actions are taken during the life of the MSS for the scheduled maintenance policy π1. 

 

 
Figure 5-Number of times that actions are taken during the life of the MSS for the corrective maintenance policy π2 

 



 π* π1 π2 

N° of PM 
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4

1

5

2

5

1

4

2

4

1

4

2

1

1

4

2

4

1

1 2 aaaaaaaaaa   

34 70 0 

N° of CM 
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1

1

5
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1

1 2 aaaaaaaaaa   

9 54 214 

Table 1 - Total number of PM and CM actions taken on average for each policy. 

Finally, it is worth noticing that in this case study the variability of the return in case of policies π1 and π2 is 

larger than that of policy π*. This result can be justified by considering the instantaneous availability of the 

system with respect to the threshold W, which is defined as the probability that the MSS is able to supply, at 

any time instant, the due flow rate W (Figure 6).  

Moreover, the behavior of the instantaneous availability corresponding to π* is less oscillating than that of 

policies π1 and π2, because of the distribution of the loads on the pumps that minimizes their risk of failure while 

ensuring that the production request W is met. This results in a larger steady state availability. If we consider 

policy π1, we can see periodical sharp reductions in the availability behavior, which correspond to the scheduled 

maintenance activities. These make the MSS unable to provide the necessary output to satisfy the production 

request W. These peaks are not present in case of π2, because the units are not preventively stopped and repaired. 

In this case, there is a first reduction of the availability corresponding to the failure of one pump (around t=90), 

followed by an increase due to the maintenance activity that resets the pump into operation. 

 
Figure 6 - Instantaneous availability of the MSS performing under the chosen policies. 

6 CONCLUSION 

The profitable operation of MSSs requires managing the component operational settings together with their 

preventive and corrective maintenance activities. On the one hand, when components run at high performance 

levels, the MSS operation profit increases; on the other hand, this results in accelerated failure behaviors, which 

require more frequent preventive actions and corrective actions.  

To maximize the profit from the operation of a MSS, we have developed a decision support framework based 

on MDPs, which enables a comprehensive management of the MSS whereby maintenance decisions are taken 

together with those on the MSS operational settings, based on condition monitoring information about the health 

state of the MSS components. 

To set the MDP, a mathematical framework has been developed, which relies on the definition of the system 

state, the corresponding possible actions with their effects and the reward function.  

An application is shown to a MSS made up of 2 parallel pumps, which must deliver a minimum flow rate to 

not incur into losses. The results provided by the MDP have been compared to those of two other management 

policies and shown superior. 

MDPs have proven to be a powerful tool in the field of condition-based management of MSS, enabling for 

improvements in terms of income and availability. 



Future research will be aimed at developing Reinforcement Learning for identifying the management policy 

of MSSs with large state spaces, also in the situation in which the component degradation levels cannot be 

exactly known. 
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8 APPENDIX 1 

Initialize Q=0 for each state Ss , A available in s. 

Repeat 

 0  

  for each Ss  

   for each A available when in s 

    q(s,A)←Q(s,A) 

    ))',',((max)',,(),(
','

sAssAsAs QrQ
As

  

% ',' As  denote, respectively, all the states that can be reached from s when taking A, and the actions 

that are available in the new state. 

) ),(),(, max( AsAs Qq   

Until  (small positive number) 

Output: Q, )(maxarg)( Q
A

s  

9 APPENDIX 2 

In our study, the components undergo fatigue, a degradation process that causes microscopic cracks to grow 

when cyclic loads are applied. Once a crack reaches a critical size, it will propagate suddenly and the unit will 

fracture. 

The evolution of the depth of the crack can be modeled by means of the Paris-Erdogan law (Cadini et al., 

2009): 

Nxexx n

k

C

kk
k  )(1 

 

where x denotes the crack depth, N the load cycles, C and n are constants related to the material properties 

and β can be derived from experimental data, ω is a white Gaussian noise to represent the stochasticity in the 

evolution of the degradation mechanism and k is the current time step of the process (Cadini et al., 2009). This 

equation is used to simulate a large number of failure histories. 



Then, we partition the crack depth [0,100] into bins representing the discrete health states of the degradation 

process. This allows us estimating the transition rates λij from state i to state j through the maximum likelihood 

method: 

departures

ij

ij
n

n
  

where nij denotes the number of times that, starting from state i, the component ended in state j and ndepartures 

is the total number of times that the component departed from state i. Then, assuming a time step dt=1, the 

transition probability from state i to state j is: pij=λijdt. 

In our work, we performed 105 Monte Carlo simulations both for the load setting 
ia1 , in which the load cycle 

N  is 10, and for the load setting 
ia2 , whose load cycle is 1. Each simulation starts with a crack depth of 

1.00 x , in arbitrary units, and ends when the threshold for failure, 100fx  is reached. The number of bins 

is 15, which corresponds to the discrete number of states that was chosen for the study. The parameters charac-

terizing the law of Paris-Erdogan can be found in (Cadini et al., 2009). 

Below we report the estimated transition matrices 
i

1T  and 
i

2T , together with 
i

4T  and 
i

5T . 

With respect to matrix 
i

2T , notice that the transition probabilities are not always decreasing with increasing 

degradation states. For example, the probabilities ),10,1(2

i
T  )13,1(2

i
T  and ),15,1(2

i
T of entering states 

15 13, ,101 
is  from state 11 

is , i=1, 2, respectively, are smaller than )12,1(2

i
T  and )14,1(2

i
T  (i.e., the proba-

bilities of reaching states 14 ,121 
is , respectively). This is a consequence of the application of the Monte Carlo 

method to estimate the transition rates between states: transitions from the least degraded states to those highly 

degraded are rare events and, thus, their correct estimations require a large number of MC simulations. In this 

case study, ),10,1(2

i
T  )13,1(2

i
T  and )15,1(2

i
T  are set to 0 because the MC simulations have never experienced 

any of these transitions. 

Notice that we could have applied a different MDP algorithm encoding the Monte Carlo simulation in the 

estimation of the value functions, instead of estimating off-line the transition matrices (e.g., Sutton and Barto, 

1998). Our choice is motivated by a twofold justification. On one side, the algorithm proposed in this study is 

easier to implement, whilst the computational burdens of the two MDP solutions are similar to each other. On 

the other side, this work is a preliminary study on MDPs for managing systems with PHM equipped compo-

nents, and in the future research work, we expect to address issues in which the transition matrices are known. 
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