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Abstract 

Data-driven methods for direct prognostic map the relationship between monitored parameters 
and equipment Remaining Useful Life (RUL). They typically require the availability of a set 
of run-to-failure degradation trajectories for model training. Yet, in many industrial 
applications, equipment is often replaced before they fail to avoid catastrophic consequences 
on production and safety. Then also, incomplete degradation trajectories are available. In this 
work, we develop a method for predicting equipment RUL, and the related uncertainty based 
on both complete and incomplete degradation trajectories. The method is based on the 
combined use of a similarity measure and Evidence Theory (EvT). Application of the method 
on two case studies shows that it provides accurate RUL predictions, also in comparison with 
a similarity-based regression method of literature. 
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1. INTRODUCTION 

Various data-driven methods have been proposed for predicting the Remaining Useful 
Life (RUL) of degrading equipment [1], i.e., the time before the piece of equipment 
stops fulfilling its design functions. Such data-driven methods rely on the availability 
of collected data in the field during equipment operation [1] and are of interest when 
an explicit model of the equipment degradation process is not available. Among data-
driven methods one can distinguish (𝑖) degradation-based approaches. which aim at 
modeling the future evolution of the equipment degradation, (𝑖𝑖) direct RUL prediction 
approaches, which attempt to directly predict the equipment RUL [2]. 

Degradation-based approaches are based on statistical models that learn the equipment 
degradation evolution from time series of observations of the degradation state [3]. The 
predicted degradation state is, then, compared with a failure criterion (failure 
threshold) representative of the degradation state beyond the which the equipment fails 
performing its required functions. Examples of modeling techniques used in 
degradation-based approaches are Wiener Processes (WP) [4], Gamma Processes (GP) 
[5], Inverse Gaussian Processes (IGP) [6], Semi-Markov Models (SMM) [7], Hidden 
Semi-Markov Models (HSMM) [8], General Path Models (GPM) [9] and fuzzy 
transition models [10] based on Mamdani models [11]. 

Degradation–based approaches provide informative and transparent outcomes, 
giving the current prediction of the equipment RUL and the prediction of the entire 
equipment degradation trajectory. However, proper degradation state indicators and 
failure thresholds must be identified, which can be difficult tasks in some industrial 
applications, especially when the knowledge of the degradation process is limited and 
only few and/or irregular degradation trajectories are available. 

Direct RUL prediction approaches typically resort to machine learning 
techniques that map the direct relationship between the observed signals and the 
equipment RUL, without passing through predicting the equipment degradation state 
evolution and setting a failure threshold [12]. When few degradation trajectories with 
no clear patterns of regularity are available for model training, similarity-based (also 
known as instance-based) learning algorithms [13] have been proved to be effective 
given that they do not perform explicit generalization. Contrarily, non-linear regression 
methods such as those based on Artificial Neural Networks (ANN) [14,15], which are 
characterized by large numbers of parameters to be tuned, tend to underperform due 
to the scarcity of training examples [16]. Indeed, direct RUL prediction approaches 
assume the availability of a set of complete run-to-failure degradation trajectories for 



training. In industrial applications, these can be collected on components which are 
cheap and not critical from the point of view of production and safety. In some cases, 
they can even be collected in ad-hoc performed laboratory tests.  

Condition monitoring data are typically collected between consecutive 
maintenance interventions which, in many industrial applications are conservatively 
periodically scheduled to avoid failures. As a consequence, since no or few failures are 
observed, the available data refer to degradation trajectories which are right censored 
or incomplete, i.e., they do not contain data collected in the last part of the component 
life. 

Furthermore, performing experimental run-to-failure tests to collect condition 
monitoring data during the entire equipment life is impractible for safety-critical and 
high-value components such as those used by aerospace, nuclear and oil and gas 
industries characterized by very high reliability and unique or new designed 
components. In other industrial sectors, such as the automotive, the design and 
execution of test campaigns to collect run-to-failure degradation trajectories requires 
significant cost, time and resources. For example, in the automotive electronic [17] a 
temperature cycling test designed to adequately represent the life of automotive 
electronic components can easily take 2-5 months [17]. In many practical cases, such 
stress tests have to be repeated multiple times, e.g., whenever new failure modes are 
discovered or design changes are introduced. 

Also, for both degradation-based and direct-RUL prediction approaches, it is 
fundamental to provide an assessment of the expected mismatch between the ground 
truth and the predicted RUL. For this, all sources of uncertainty affecting the RUL 
prediction must be considered: 

 the aleatory uncertainty caused by the variability of the degradation process 
itself (e.g., due to the micro-structural differences between pieces of the same 
equipment or to unforeseen future loads, operational settings, and external 
conditions) [17-18]; 

 the epistemic uncertainty due to imperfect knowledge of the equipment 
degradation process model and its parameters [19]. 

Uncertainty management, is thus, a fundamental task in prognostics [20], in order to 
allow them confidently planning maintenance actions [21]. 

In this context, the objective of this work is twofold: 



1) developing a prognostic method capable of exploiting all the available 
information, including data from right-censored degradation trajectories and not 
only from complete, run-to-failure trajectories; 

2) representing the uncertainty in the RUL prediction. 

For this, we propose a novel method called Evidential Similarity-based Regression 
(EvSR), which combines Similarity-based Regression (SR) with Evidence Theory 
(EvT). Similarity-based approaches have been successfully applied in fault prognostics. 
In [22], the authors have developed a fuzzy instance-based prognostic approach which 
builds local fuzzy models and applied it to engine RUL prediction. For a given test 
engine, the fuzzy model identifies a cluster of peers characterized by similar instances 
with comparable operational characteristics. The final RUL estimate is, then, a 
similarity weighted average of the cluster instances. In [23], a library of degradation 
models has been created using linear regression and used to construct health indicators. 
The test component RUL is, then, estimated through a weighted sum of the RULs of 
the most similar instances. The method has been successfully applied to the PHM 2008 
challenge turbofan data. In [13], a fuzzy point-wise similarity measure among 
degradation trajectories is defined to associate weights to the training trajectories. The 
test component RUL is, then, obtained as a weighted sum of RULs of the similar 
instances. Only run-to-failure degradation trajectories have been considered to train 
the prognostic model in all these works. 

 The use of EvT (also referred to as Dempster-Shafer theory, Belief Function 
Theory (BFT)) [24] in fault prognostics, has been proposed in few works which typically 
rely on degradation-based approaches to forecast the future equipment degradation 
states. In [25], a trajectory similarity-based approach relying on the use of a K-Nearest 
Neighbours (KNN) classifier based on the belief function is proposed to jointly predict 
observations and degradation states of aircraft engines. In [26], an evolving real-time 
neuro-fuzzy system is used to forecast future observation values and an evidential 
Markovian classifier based on EvT is trained to classify the turbofan degradation states 
using the predicted observations. In [27], an Evidential Hidden Markov Model 
(EvHMM), which combines probabilistic Hidden Markov Model (HMM) with EvT, is 
developed to estimate degradation states of turbofan engines. Notice that these works 
only exploit the information content of complete run-to-failure trajectories. 

To the best of our knowledge, the only attempt to combine SR with EvT is given in 
[28]. SR is used to predict the RUL of sea water filters in an energy production plant 



and EvT is exploited to provide a left-bounded interval ൣ𝑅𝑈𝐿 , +∞൧, which guarantees 
that the lower bound of the probability that the RUL of the test equipment is larger 
than 𝑅𝑈𝐿 is greater than a required confidence level. Yet, in [28] the use of EvT is 
limited by the facts that a) right-censored trajectories are not included in the training 
set, b) only a lower bound is provided for quantifying the uncertainty on the RUL 
prediction, c) EvT is not used to provide a RUL point prediction. 

 In this work, we overcome the limitations a), b) and c) of [28] by proposing a 
complete framework combining SR with EvT. We adopt the view of Smets’ 
Transferable Belief Model (TBM) [29], which is based on the assumption that beliefs 
manifest themselves at two mental levels: the “credal” level where beliefs are 
entertained and the “pignistic” level where beliefs are used to make decisions. At credal 
level, Smets proposed that beliefs are represented by belief functions [29]. When a 
decision must be made, the beliefs held at the credal level induce a pignistic probability 
function at the pignistic level. This probability function is called the pignistic 
probability function. The proposed EvSR method considers run-to-failure and right-
censored degradation trajectories as agents whose state of knowledge on the actual 
RUL of the testing equipment is encoded in a Basic Belief Assignment (BBA). The 
construction of these BBAs is based on the estimation of the similarity between test 
and training trajectories. Then, Dempster’s rule of combination is applied to combine 
the BBAs corresponding to each training trajectory. The resulting combined BBA is, 
then, used to compute the corresponding pignistic distribution, from which one can 
derive: 1) the pignistic expectation, which represents the RUL point prediction and can 
be regarded as our decision point on the unknown RUL and 2) pignistic quantiles, 
which allow properly defining a two-sided prediction interval to quantify the 
uncertainty in the RUL prediction. The proposed EvSR approach is verified and 
compared with a SR-based approach with respect to two real case studies concerning 
the RUL prediction of turbofan engines and knives used in the packaging industry. 

 This work, is organized as follows: Section 2 states the assumptions on the 
available data and the problem. Section 3 recalls the method for RUL prediction based 
on SR and the basic concept of EvT. Section 4 describes the proposed EvSR for RUL 
prediction and uncertainty quantification. In Section 5, we discuss the metrics to 
quantitatively assess the performance and how to tune the hyperparameters of the 
proposed methodology. The case study and the application of the proposed method are 
reported in Section 6. Finally, Section 7 concludes the work.. 



2. PROBLEM STATEMENT 
The objective of this work is to estimate the RUL of a test component for which the 
degradation trajectories of 𝑁 pieces of equipment similar to the one currently monitored 
have been observed. Among the available degradation trajectories, 𝑁ி < 𝑁 are run-to-
failure trajectories and the remaining 𝑁ு = 𝑁 − 𝑁ி are right-censored degradation 
trajectories (i.e., trajectories corresponding to equipment replaced before failure). We 
refer to these two classes of trajectories as “complete and “incomplete” trajectories, 
respectively. We consider the case in which it is difficult to obtain complete trajectories, 
e.g., new or safety critical components for which running to failure can be lengthy, 
costly or dangerous. Therefore, to be realistic, we assume 𝑁ி ≤ 𝑁ு and a limited number 
of available degradation trajectories (e.g., 𝑁 = 𝑁ி + 𝑁ு < 30). 

Let 𝒛(𝜏) = ൣ𝑧ଵ
 (𝜏) … 𝑧ெ

 (𝜏)൧ ∈ ℝெ, 𝑖 = 1, … , 𝑁, 𝜏 = 1, … , 𝑛 , be the vector of 𝑀 features 
extracted from signal measurements performed at time 𝜏, on the 𝑖௧ component. The 
time 𝑛 corresponds to the failure time if the 𝑖௧ trajectory is complete (𝑖 = 1, … , 𝑁ி) or 
to the last observation performed on the component before replacement if the trajectory 
is incomplete (𝑖 = 𝑁ி + 1, … , 𝑁). We assume that an expert is capable of providing an 
upper bound 𝑇௫ > 0 on the equipment life duration. This implies that for the 𝑖௧ 
right-censored degradation trajectory the ground truth RUL at time 𝜏, 𝑦(𝜏), lies in 
the interval, 𝐼(𝜏) = ൫𝑦

 (𝜏), 𝑦
 (𝜏)൧, where 

 

𝑦
 (𝜏) = 𝑛 − 𝜏    𝑖 = 𝑁ி + 1, … , 𝑁; 𝜏 = 1, … , 𝑛  

(1) 

𝑦
 (𝜏) = 𝑇௫ − 𝜏    𝑖 = 𝑁ி + 1, … , 𝑁; 𝜏 = 1, … , 𝑛 

 
(2) 

Instead, we exactly know the ground truth RUL of the 𝑖௧ complete degradation 
trajectory 

 

𝑦(𝜏) = 𝑛 − 𝜏    𝑖 = 1, … , 𝑁ி; 𝜏 = 1, … , 𝑛 
 

(3)    

We consider a case in which the failure thresholds for the extracted features are not 
known. In this setting, fault prognostics is framed as a regression problem: given a 
training set, 𝑈, formed by 𝑁ி realizations of complete degradation trajectories 
൛𝒛𝒊(𝜏), 𝑦(𝜏), 𝜏 = 1, … , 𝑛ൟ, 𝑖 = 1, … , 𝑁ி   and 𝑁ு realizations of incomplete degradation 
trajectories ൛𝒛𝒊(𝜏), 𝐼(𝜏), 𝜏 = 1, … , 𝑛ൟ, 𝑖 = 𝑁ி + 1, … , 𝑁  of a stochastic process 
൫𝒁(𝜏), 𝑌(𝜏)൯ ∈ ℝெ𝑥 (0, +∞), our task is to find a function 

 

𝑓: ℝெ× → (0, +∞) 
(4a) 

𝑓 = 𝑓(𝒛ఛିାଵ:ఛ) (4b) 



𝒛ఛିାଵ:ఛ = [𝒛(𝜏 − 𝑘 + 1), … , 𝒛(𝜏 − 1), 𝒛(𝜏)]  𝑘 = 1, … , 𝜏 
 

(4c) 

that associates to a test pattern 𝒛ఛೞିାଵ:ఛೞ

௧௦௧ = [𝒛௧௦௧(𝜏௧௦௧ − 𝑘 + 1), … , 𝒛௧௦௧(𝜏௧௦௧ −

1), 𝒛௧௦௧(𝜏௧௦௧)] ∈ ℝெ× at the current time instant 𝜏௧௦௧, the corresponding output 
𝑦௧௦௧(𝜏௧௦௧). The regression curve 𝑓 in Eq. (4) can depend on all degradation history up 
to time current time (i.e., 𝑘 = 𝜏), or only on the last 𝑘 observations (𝑘 < 𝜏). 

3. RUL ESTIMATION BASED ON SIMILARITY REGRESSION AND 
BASIC CONCEPTS OF EVIDENCE THEORY 

3.1. RUL estimation based on similarity regression 

This Section briefly illustrates the similarity-based regression method for the prediction 
of the RUL of a test component proposed in [13]. The distance 𝛿(𝜏௧௦௧, 𝜏) between the 
test pattern 𝒛ఛೞିାଵ:ఛ

௧௦௧  and the training pattern 𝒛ఛషೖశభ:ഓ

  extracted from the 𝑖௧ complete 

training trajectories is defined by: 

 

𝛿(𝜏௧௦௧, 𝜏) b = ฮ𝒛ఛೞିାଵ:ఛೞ

௧௦௧ − 𝒛ఛିାଵ:ఛ

 ฮ
ଶ

 𝑖 = 1, … , 𝑁ி; 𝜏 = 𝑘, … , 𝑛 
 

(5)    

where ‖𝒛𝟏 − 𝒛𝟐‖ଶ is the Euclidean distance between vectors 𝒛𝟏 and 𝒛𝟐. The similarity 
measure 𝜇(𝜏௧௦ , 𝜏) between the test trajectory segment 𝒛ఛೞିାଵ:ఛೞ

௧௦௧  and the training 

trajectory segment 𝒛ఛିାଵ:ఛ

  is defined by the Gaussian kernel function:  

 

𝜇(𝜏௧௦௧, 𝜏) = exp ቆ−
𝛿

ଶ(𝜏௧௦௧, 𝜏)

2𝜎
ቇ     𝑖 = 1, … , 𝑁ி; 𝜏 = 𝑘, … , 𝑛; 𝜎 > 0 

 

 

(6) 

where the scale parameter 𝜎 is set by the analyst to shape the desired interpretation 
to proper similarity degree. This similarity has turned out to give robust results in 
similarity-based regression due to its gradual smoothness [13]. For each complete 
training trajectory, 𝑖 = 1, … , 𝑁ி , the segment of length 𝑘 with largest similarity, 
𝒛ఛ

∗ିାଵ:ఛ
∗

 , is first identified 

 

𝒛ఛ
∗ିାଵ:ఛ

∗
 :   𝜏∗

 = argmax
ఛୀ,…,

𝜇(𝜏௧௦௧, 𝜏)   

 

(7) 

Then, we associate to each training trajectory the normalized weight 𝜔
∗: 

 

𝜔
∗ =

𝜔

∑ 𝜔
ேಷ
ୀଵ

     

 

 

(8) 

with  



 

𝜔 = 𝜇(𝜏௧௦௧, 𝜏
∗)      

 

 

(9) 

and the RUL: 

 

𝑦(𝜏
∗) = 𝑛 − 𝜏

∗       
 

 

(10) 

corresponding to that of the last pattern of the most similar segment. The RUL 
𝑦௧௦௧(𝜏௧௦௧) of test pattern 𝒛ఛೞିାଵ:ఛೞ

௧௦௧   is estimated as a similarity-weighted sum: 

 

𝑦ො௧௦௧(𝜏௧௦௧) =  𝜔
∗

ேಷ

ୀଵ

𝑦(𝜏
∗)         

 

 

(11) 

The ideas behind weighting the individual 𝑦(𝜏
∗) is that: (i) all trajectories in the 

training set bring useful information for estimating the RUL of the test trajectory; (ii) 
those segments of the training trajectories which are most similar to the most recent 
segment of the test trajectory should be more informative in the prediction of the future 
behavior of the test trajectory. With respect to the assessment of the uncertainty 
affecting the RUL prediction, the Similarity-based Conditional Cumulative 
Distribution (SCCD) has been defined as [30]: 

 

𝐹൫𝑦௧௦௧(𝜏௧௦௧)|𝒛ఛೞିାଵ:ఛೞ

௧௦௧ ൯ =  1௬ೞ(ఛೞ)∈൫,௬൫ఛ
∗൯൧൫𝑦௧௦௧(𝜏௧௦௧)൯𝜔

∗

ேಷ

ୀଵ

       

 

 

(12) 

where 1(∙) denotes the indicator function of a set. Then, the (1 − 𝜖) × 100 prediction 
interval,  𝐼መఢ(𝜏௧௦௧) = [𝑦ොఢ,(𝜏௧௦௧), 𝑦ොఢ,(𝜏௧௦௧)], 𝜖 ∈ (0,1),  can be obtained as 

 

𝑦ොఢ,(𝜏௧௦௧) = inf ቄ𝑦௧௦௧(𝜏௧௦௧) ∈ (0, +∞)| 𝐹൫𝑦௧௦௧(𝜏௧௦௧)|𝒛ఛೞିାଵ:ఛೞ

௧௦௧ ൯ >
𝜖

2
ቅ       

 

 

(13) 

 

𝑦ොఢ,(𝜏௧௦௧) = inf ቄ𝑦௧௦௧(𝜏௧௦௧) ∈ (0, +∞)| 𝐹൫𝑦௧௦௧(𝜏௧௦௧)|𝒛ఛೞିାଵ:ఛೞ

௧௦௧ ൯ > 1 −
𝜖

2
ቅ       

 

(14) 

 

3.2. Basic concepts of Dempster-Shafer evidence theory 

To overtake the limitation of the methodology discussed in Subsection 3.1, which 
exploits only the information provided by complete degradation trajectories, we propose 
a novel approach for RUL prediction, which will be referred to as Evidential Similarity 
Regression (EvSR), and combines Similarity-based Regression (SR) with Evidence 
Theory (EvT) (also known as Dempster-Shafer theory or Belief Function Theory 



(BFT)) [24]. Adopting the view of Smets’ Transferable Belief Model (TBM) [29], we 
assume that beliefs manifest themselves at two mental levels: the “credal” level where 
beliefs are entertained and the “pignistic” level where beliefs are used to make decisions. 
At credal level, beliefs are represented by belief functions [29], whereas, when a decision 
must be made at the pignistic level, the beliefs held at the credal level induce a 
probability function which is called the pignistic probability function. In what follows, 
we briefly introduce the necessary notions of EvT. 

3.2.1. Mass Functions 

 Let 𝑋 denote a variable taking values in a domain Θ called the frame of discernment. 
A discrete mass function 𝑚 with focal sets 𝐴ଵ, … , 𝐴 is a function from 2 to [0, 1] 
verifying 𝑚൫𝐴൯ = 𝑚 > 0 for all 𝑔 ∈ {1, … , 𝐺}, 𝑚(𝐴) = 0 for all 𝐴 ∉ {𝐴ଵ, … , 𝐴ீ}, and: 

 

 𝑚 = 1

ீ

ୀଵ

 

 

 
(15)   

Mass function 𝑚 is called Basic Belief Assignment (BBA) and each number 𝑚 is 
interpreted as a degree of belief attached to the proposition 𝑋 ∈ 𝐴, and no more specific 

proposition, based on some evidence. The triplet ቀΘ, ൛𝐴ൟ
ୀଵ:ீ

, 𝑚ቁ is called Dempster-

Shafer Belief Structure (DSBS) [31]. 

Given a normal mass function 𝑚, i.e., such that 𝑚(∅) = 0, with focal sets 𝐴ଵ,…,𝐴ீ , 
the corresponding belief and plausibility functions are defined, respectively, as: 

 

𝑏𝑒𝑙(𝐴) =  𝑚

൛:⊆ൟ

     

𝑝𝑙(𝐴) =  𝑚

{:∩ஷ∅}

 

 

 

(16) 
 
(17) 

for all 𝐴 ⊆ Θ. These two functions are linked by the relation 𝑃𝑙(𝐴) = 1 − 𝐵𝑒𝑙(�̅�) for all 
𝐴 ⊆ Θ. 𝐵𝑒𝑙(𝐴) can be interpreted as the degree to which the evidence supports 𝐴, and 
𝑃𝑙(𝐴) as the degree to which the evidence is not contradictory to 𝐴.  

According to Dempster interpretation [40], the mass function 𝑚 defines a set of 
probability measures 𝒫(𝑚)  on the measurable space ൫Θ, ℬ(Θ)൯, where  ℬ(Θ) denotes the 
Borel 𝜎 −algebra on Θ, such that: 

 (18)   



𝑏𝑒𝑙(𝐴) ≤ ℙ(𝐴) ≤ 𝑝𝑙(𝐴), ∀ℙ ∈ 𝒫(𝑚) 
 

for any measurable subset 𝐴 of Θ. A probability measure ℙ satisfying the above 
inequalities is said to be compatible with 𝑚 [33]. Therefore, the mass function provides 
information about the probability of a set in an imprecise manner by giving the interval 
in which the probability lies [34].  

The mass functions, 𝑚ଵ and 𝑚ଶ, induced by two distinct pieces of evidence, can 
be combined using Dempster’s combination rule [33-35]:  

 

𝑚ଵ,ଶ(𝐴) = 𝑚ଵ⨁𝑚ଶ(𝐴) =
1

1 − 𝜒
 𝑚ଵ(𝐵)𝑚ଶ(𝐶)

∩ୀ

 

 

(19)   

for all 𝐴 ⊆ Θ, 𝐴 ≠ ∅, 𝑚ଵ⨁𝑚ଶ(∅) = 0, where:  

 

𝜒 =  𝑚ଵ(𝐵)𝑚ଶ(𝐶)

∩ୀ∅

 

 

(20)   

is the degree of conflict between 𝑚ଵ and 𝑚ଶ. If 𝜒 = 1, there is a logical contradiction 
between two pieces of evidence and they cannot be combined. Dempster’s rule is 
commutative, associative, and it admits as neutral element the vacuous mass function 
defined as 𝑚(∅) = 0. 

 It may occur that one doubts the reliability of a source inducing the BBA 𝑚. In 
this case, the discounting operation can be used to reduce by a factor 𝛾 ∈ [0,1] the belief 
assigned by 𝑚 to the evidence conveyed by the information [35]: 

 

𝑚(𝐴) = (1 − 𝛾)𝑚(𝐴)  ∀𝐴 ⊆ Θ        
 

(21a)   

𝑚(𝐴) = (1 − 𝛾)𝑚(𝐴)  ∀𝐴 ⊆ Θ        
 

(21b) 

The mass assigned to the frame of discernment Θ in Eq. (7) represents the ignorance 
about the value of 𝑋, because it indicates the absence of evidence that the value of 𝑋 
belongs to any subset 𝐴 of Θ. 

3.2.2. Pignistic probability distribution 

Since the use of probabilities in a decision context is strongly supported by rationality 
arguments [29], a belief function has to be transformed into a probability function for 
decision making at pignistic level. One example of probability measure compatible with 



𝑚 (i.e., such that Eq. (18), holds) is the pignistic probability measure ℙ௧ with 
corresponding pignistic probability distribution 𝑝௧ [33-34]: 

 

𝑝௧(𝑥) =  𝑚(𝐴)
1(𝑥)

|𝐴|
⊆,   ஷ∅

 

 

(22)   

where 1(∙) denotes the characteristic function of 𝐴 and |𝐴| its cardinality. For each 
focal element 𝐴, the pignistic probability distribution is bound between the belief and 
plausibility functions: 

 

𝑏𝑒𝑙(𝐴) ≤ 𝑝௧(𝐴) ≤ 𝑝𝑙(𝐴) 
 

(23)   

3.2.3. Evidence theory for continuous bounded frame of discernment 

The frame of discernment Θ is assumed to be finite in Subsections 3.2.1 and 3.2.2. If Θ 
is a continuous bounded interval on the real line and the focal are a finite number of 
intervals on the real line, all the expressions defined above are unchanged [35]. For the 
sake of simplicity, we set Θ = [𝑥 , 𝑥] and we represent our state of knowledge regarding 
a quantity 𝑋 by a mass function 𝑚: 2[௫ಽ,௫ೆ] → [0,1] with 𝑔 interval focal sets 𝐴 =

ൣ𝑎, 𝑏൧ ⊆ [𝑥 , 𝑥], 𝑔 ∈ {1, . . , 𝐺}. In particular, considering measurable subset 𝐴 of [𝑥 , 𝑥] 
of the form 𝐴 = (𝑥 , 𝑥], 𝑥 ∈ [𝑥 , 𝑥],  Eq. (23) becomes: 

 

𝑏𝑒𝑙൫(𝑥 , 𝑥]൯ ≤ ℙ൫(𝑥 , 𝑥]൯ = 𝐹(𝑥) ≤ 𝑝𝑙൫(𝑥 , 𝑥]൯    
 

(24)   

where 𝐹(𝑥) is the Cumulative Distribution Function (CDF) corresponding to the 
probability measure ℙ ∈ 𝒫(𝑚) compatible with 𝑚 [31, 33]. In this case, the cardinality 
of a given set 𝐴 in Eq. (22) is replaced by its Lebesgue measure: 

 

|𝐴| = ∫ 𝐴(𝑥)𝑑𝑥  
 

(25)   
 

and the pignistic probability function 𝑝௧ is [31]:  

 

𝑝
௧(𝑥) =  𝑚൫ൣ𝑎, 𝑏൧൯

𝐼ൣ,൧(𝑥)

ห𝑏 − 𝑎ห

ீ

ୀଵ

    𝑥 ∈ [𝑥 , 𝑥] 

 

(26)   

3.2.4.   Pignistic expectation and quantiles 

The pignistic probability function defined in Eq. (26) allows defining some summary 
statistics, such as the pignistic expectation 𝔼

௧ and the pignistic quantiles 𝑞
௧(𝜖) of 

order (1 − 𝜖), 𝜖 ∈ (0,1). The pignistic expectation 𝔼
௧:  



 

𝔼
௧ = න 𝑥𝑝

௧(𝑥)𝑑𝑥 =

௫ೆ

௫ಽ

 𝑚൫ൣ𝑎, 𝑏൧൯

ீ

ୀଵ

൫𝑎+𝑏൯

2
   

 

(27)   

can be regarded as the decision point on the unknown quantity 𝑋. The pignistic 
quantiles 𝑞

௧(𝜖) are defined as 

 

𝑞
௧(𝜖) = inf{𝑥 ∈ [𝑥𝐿, 𝑥𝑈]|𝐹𝑋

𝑏𝑒𝑡(𝑥) ≥ 1 − 𝜖}    ∀𝜖 ∈ (0,1)   
 

(28)   

where 𝐹
௧ is the pignistic cumulative distribution: 

𝐹
௧(𝑥) = න 𝑝

௧(𝑥)𝑑𝑥
௫ழ௫

    𝑥 ∈ [𝑥 , 𝑥]   

 

(29)   

By choosing 𝑥ఢ, = 𝑞
௧(𝜖) and 𝑥ఢ, = 𝑞

௧(1 − 𝜖), the interval 𝐼
௧(𝜖) =

ൣ𝑥ఢ, , 𝑥ఢ,൧, satisfies:  

ℙ
௧ ቀ𝑋 ∈ 𝐼

௧(𝜖)ቁ = 1 − 𝜖   
 

(30)   

i.e., 𝐼
௧(𝜖) is a (1 − 𝜖) × 100% prediction interval for 𝑋 and it can be regarded as the 

decision interval on the unknown quantity 𝑋. 

4. EVIDENTIAL SIMILARITY-BASED REGRESSION 

The key idea of the proposed method is to consider complete and incomplete training 
trajectories as agents whose state of knowledge regarding the unknown RUL of a test 
trajectory at current time 𝜏௧௦௧, 𝑋 = 𝑌௧௦௧(𝜏௧௦௧), is represented by a mass function 
𝑚ఛೞ

 , 𝑖 = 1, … , 𝑁. This latter is defined by the similarity measure between the trajectory 
segment containing the last 𝑘 measurements extracted from the test trajectory 
𝒛ఛೞିାଵ:ఛೞ

௧௦௧  and the segment 𝒛ఛషೖశభ:ഓ

  extracted from the 𝑖௧ training trajectory. Then, 

the weights 𝜔, associated to each training trajectory, 𝑖 = 1, … , 𝑁, are assigned by 
applying Eqs. (7) and (9), and the discount factor 𝛾 ∈ [0,1) (Eq. 21): 

 

𝑚ఛೞ
 ቀ𝐼(𝜏

∗)ቁ = 𝛾𝜔   
 

(31a)   

𝑚ఛೞ
 ൫Θఛೞ

൯ = 1 − 𝛾𝜔 (31b)   
 

where Θఛೞ
 is the frame of discernment, i.e., the domain [0, 𝑇௫ − 𝜏௨] ⊂ ℝ of the 

unknown quantity 𝑅𝑈𝐿ఛೞ
 with 𝑇௫ representing the maximum life duration of the 

equipment provided by an expert (see Section 2). Parameter 𝛾 represents the analyst 
prior opinion about the maximum information that can be derived from the 𝑖௧ training 



trajectory with respect to the estimation of the test trajectory RUL [28]. Notice that 
𝛾 < 1 implies that a part of belief is assigned to the ignorance represented by Θఛೞ

, 
even in the unrealistic case of a reference trajectory exactly identical to the test one 
[28]. When no prior knowledge is available on parameter 𝛾, this can be set through 
cross-validation.  

 The definition of the quantity 𝐼(𝜏
∗) in Eq. (31), which indicates the uncertain 

interval of the component RUL, depends on whether the index 𝑖 refers to a complete 
or a right-censored training trajectory. In case of complete degradation trajectories, 𝑖 ∈

{1, … , 𝑁ி}, 

 

𝐼(𝜏
∗) = [𝑛 − 𝜏

∗, 𝑛 − 𝜏
∗ + 1)    𝑖 = 1, … , 𝑁ி  

 
(32)   

since we only know that at time 𝜏
∗ − 1 the component was working and at time 𝜏

∗ it 
was failed, whereas in the case of incomplete degradation trajectories, 𝑖 ∈ {𝑁ி + 1, … , 𝑁},  

 

𝐼(𝜏
∗)  = (𝑛 − 𝜏

∗, 𝑇௫ − 𝜏
∗]    𝑖 = 𝑁ி + 1, … , 𝑁  

 

(33)   

since we know that the component failure would have been after time 𝜏
∗, which 

corresponds to the time at which the component was preventively replaced, but before 
time 𝑇௫, which, according to the expert is an upper bound of the component life 
duration.  

Once the mass functions 𝑚ఛೞ
  associated to each training trajectories have been 

computed, they are combined into the BBA 𝑚ఛೞ
 by applying Eqs. (19-20). The BBA 

𝑚ఛೞ
 represents our state of knowledge on the unknown component RUL at time 𝜏௧௦௧, 

𝑌௧௦௧(𝜏௧௦௧). From 𝑚ఛೞ
 the pignistic probability density function and the pignistic 

cumulative distribution function can be derived using Eqs. (26) and (27), respectively. 

The bounds of a (1 − 𝜖) ∙ 100% prediction interval   𝐼መఢ(𝜏௧௦௧) = [𝑦ොఢ,(𝜏௧௦௧), 𝑦ොఢ,(𝜏௧௦௧)] 

such that ℙ ቀ𝑌௧௦௧(𝜏௧௦௧) ∈ 𝐼መఢ(𝜏௧௦௧)ቁ = 1 − 𝜖, 𝜖 ∈ (0,1) are obtained by applying Eqs. (29-

30) and the pignistic expectation   𝑦ො௧௦௧(𝜏௧௦௧) by Eq. (28). We consider 𝑦ො௧௦௧(𝜏௧௦௧) and 
𝐼መఢ(𝜏௧௦௧) as our “decision” point and interval, respectively. 

5. PERFORMANCE METRICS AND HYPERPARAMETER TUNING 

In this Section, we briefly describe the metrics used to quantitatively assess and 
compare the performance of prognostic models SR and EvSR and how to tune the 
models hyperpameters. Considering a generic test trajectory (𝒛(𝜏), 𝑦(𝜏)), 𝜏 = 1, … , 𝑛, we 



refer to 𝑦ො(𝜏) and  𝐼ఢ
(𝜏) = [  𝑦ොఢ,(𝜏), 𝑦ොఢ,(𝜏)] as a generic point estimate and an (1 −

𝜖) × 100% prediction interval of the test component RUL at time 𝜏, 𝑦(𝜏), respectively.  

5.1.  Performance metrics for complete test degradation trajectories 

1) The Root Mean Square Error (RMSE) metric [28] is used to assess the quality 
of the point RUL prediction 𝑦ො(𝜏) provided by a prognostic model. It is defined 
as 

𝑅𝑀𝑆𝐸 =   ඩ
1

𝑛
(𝑦ො(𝜏) − 𝑦(𝜏))ଶ



ఛୀଵ

  

 

(34)   

The RMSE measures the accuracy of the estimated RUL 𝑦ො(𝜏) and is desired to be as 
small as possible.  

 
2) The Interval Score 𝐼𝑆ఢ metric [35] is used to assess the quality of the RUL 

prediction interval 𝐼ఢ
(𝜏) provided by a prognostic model. It is defined by: 

𝐼𝑆ఢ =  ቀ𝐼𝑆ఢ,(𝜏) + 𝐼𝑆ఢ,(𝜏)ቁ    



ఛୀଵ

  

 

(35)   

with 

𝐼𝑆ఢ,(𝜏) =
2

1 − 𝜖
ቀ𝑦ොఢ,(𝜏) − 𝑦(𝜏)ቁ 1൛௬(ఛ)ழ௬ොച,ಽ(ఛ)ൟ(𝑦(𝜏)) +

2

1 − 𝜖
ቀ𝑦(𝜏) − 𝑦ොఢ,(𝜏)ቁ 1൛௬(ఛ)வ௬ොച,ೆ(ఛ)ൟ(𝑦(𝜏))  

 
(36a)   

𝐼𝑆ఢ,(𝜏) = 𝑦ොఢ,(𝜏) −  𝑦ොఢ,(𝜏) (36b) 
where  1(∙) denotes the indicator function of a set. The metric considers a trade-
off between the desiderata of producing prediction intervals which contain the 
target ground truth RUL (first addend 𝐼𝑆ఢ,(𝜏), in Eq. (36)) and which are narrow 
(second addend 𝐼𝑆𝜖,𝐵(𝜏) in Eq. (36)) [35]. Smaller is the 𝐼𝑆ఢ, more satisfactory the 
prediction intervals are. 

5.2. Performance metrics for incomplete degradation trajectories 

Since metrics 1) and 2) require the knowledge of the ground truth RUL of the test 
trajectory, they cannot be applied in case of incomplete test degradation trajectories. 
Therefore, we introduce two additional prognostics metrics that exploit the only 
information available about 𝑦(𝜏) for incomplete degradation trajectories, i.e., 𝑦(𝜏) ∈

𝐼(𝜏) = (𝑦(𝜏), 𝑦(𝜏)] = (𝑛 − 𝜏, 𝑇௫ − 𝜏]. 



3) The Prediction Interval Coverage 𝑃𝐼𝐶ఢ [36] measures the accuracy of the 
prediction interval 𝐼መఢ(𝜏) when only the interval 𝐼(𝜏) to which the ground truth 
RUL belongs is known. It is defined by: 

𝑃𝐼𝐶ఢ =
1

𝑛
 𝑃𝐼𝐶ఢ(𝜏)

 

ఛୀଵ

  

 

(37)   

           with 

𝑃𝐼𝐶ఢ(𝜏) =

⎩
⎪
⎨

⎪
⎧     1                            𝐼(𝜏) ⊆ 𝐼መఢ(𝜏) 

diam൫𝐼(𝜏) ∩ 𝐼መఢ(𝜏)൯

diam(𝐼(𝜏))
        𝐼(𝜏) ∩ 𝐼መఢ(𝜏) ≠ ∅    

        0                          𝐼(𝜏) ∩ 𝐼መఢ(𝜏) = 0

  

 

(38)   

where diam(𝐼(𝜏)) and diam൫𝐼(𝜏) ∩ 𝐼መఢ(𝜏)൯ refer to the width of intervals 𝐼(𝜏) and 

ቀ𝐼(𝜏) ∩ 𝐼መఢ(𝜏)ቁ, respectively. Eq. (39) implies that if the target 𝐼(𝜏) is entirely 

contained within the estimated prediction interval  𝐼መఢ(𝜏), then 𝑃𝐼𝐶ఢ(𝜏) is equal to 1. 
If the estimated prediction interval does not contain the entire target 𝐼(𝜏), but the 
intersection of the two is nonempty, then 𝑃𝐼𝐶ఢ(𝜏) is equal to the ratio between the 
width of the interval  𝐼(𝜏) ∩ 𝐼መఢ(𝜏) and the width of the interval 𝐼(𝜏), 𝑑𝑖𝑎𝑚(𝐼(𝜏)). 
Finally, if the intersection between the estimated prediction interval and the real 
target 𝐼(𝜏) is empty, then, the coverage 𝑃𝐼𝐶ఢ(𝜏) is 0. This metric is desired to be 
close to 1. 

4) Inside metric 𝐷: 

𝐷 =
1

𝑛
 1 ௬ො(ఛ)∈ூ(ఛ)(𝑦ො(𝜏))

 

ఛୀଵ

 (39)   

The inside metric 𝐷 measures the percentage of times that the point estimate of 
the predicted RUL is greater than the period of time in which the component 
has not failed, i.e., the condition 𝑦ො(𝜏) ∈ 𝐼(𝜏) holds. The metric is desired to be 
closer to 1. 

5.3.   Hyperparameter tuning 

The proposed EvSR method is characterized by the presence of three parameters, which 
should be properly tuned:  

 the Gaussian kernel scale 𝛽 used in Eq. (9); 

 the segment length 𝑘 ∈ {1,2, … } used in Eqs. (4-7); 

 the discount factors 𝛾 used in Eq. (31), 𝑖 = 1, … , 𝑁. 



We assume that 𝛾, has the same value 𝛾ி for all the complete training trajectories, i.e., 
𝛾 = 𝛾ி, 𝑖 = 1, … , 𝑁ி and the same value 𝛾ு for all incomplete training trajectories, i.e., 
𝛾 = 𝛾ு, 𝑖 = 𝑁ி + 1, … , 𝑁. Notice that a SR approach requires the setting of parameters 
𝛽 and 𝑘. Hyperparameter tuning is performed by optimizing the prediction accuracy 
metrics for complete and incomplete degradation trajectories. To this purpose, the 
RMSE and the PIC are computed on a validation set of complete and incomplete 
degradation trajectories, respectively, considering different values of the parameters to 
be set. Then, a trade-off solution among those belonging to the Pareto optimal set is 
chosen by resorting to the TOPSIS method [37], giving equal importance to the two 
considered objectives. 

6. CASE STUDIES 

The proposed EvSR prognostic method has been verified with respect to data extracted 
from a well-known benchmark and an industrial case study. 

6.1. Case Study 1: RUL prediction of turbofan engines 

We consider simulated degradation trajectories of a heterogeneous fleet of 𝑁 = 218 
turbofan engines operating under variable operational conditions. The data are taken 
from the NASA Ames Prognostics CoE Data Repository [38] and have been 
preprocessed as in [15], obtaining  𝑀 = 6 relevant features describing the component 
degradation evolution. Figure 1 shows the evolution of the six extracted features during 
the life of a turbofan engine.  

 

Figure 1. Time evolution of the extracted 6 relevant features during the entire life of a turbofan 
engine. 

The 218 trajectories have been randomly divided into 11 folds: 10 folds formed by 20 
degradation trajectories and one-fold containing the remaining 18 degradation 
trajectories. A condition in which the failure time of some turbofan engines is unknown 
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has been artificially created by applying a right-censoring mechanism to 50% of the 
trajectories in each fold. To this aim, we have randomly selected the trajectories and 
randomly sampled from a uniform distribution with support [0.5𝑛, 𝑛] (where 𝑛 is the 
ground truth time to failure of a randomly selected turbofan engine), the time at which 
the observation of the component life is interrupted. This particular setting has been 
designed for emulating the real industrial applications, where few complete degradation 
trajectories (e.g., 𝑁 < 30) are available and many of them are right-censored (𝑁ு ≥ 𝑁ி). 
Further within each fold, Principal Component Analysis (PCA) has been first applied 
to reduce the dimensionality of the feature vector. The number of principal components 
to retain has been set by identifying in the scree plot the “elbow” point where the slope 
changes from steep to shallow, in this way, we have found that independently from the 
considered fold, only the first principal component has been selected, i.e., the dimension 
of the feature vector has been reduced from 𝑀 =6 to 𝑀 =1. The performance of SR and 
EvSR methods are evaluated within each fold resorting to a twice nested Leave-One-
Out Cross Validation (LOOCV): the outer loop has been used to compute the metrics, 
whereas the inner loop has been used to set the hyperparameters, as discussed in 
Subsection 5.3. Table 1 reports the considered values of the parameters 𝛽, 𝛾ு,𝛾ி and 𝑘. 

Hyperparameter Considered values 
𝛽 {2, 2ଵ, 2ଶ, 2ଷ, 2ସ, 2ହ, 2, 2, 2଼, 2଼, 2ଽ, 2ଵ} 

𝛾ி, 𝛾ு {0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95} 

𝑘 {1,2,3,4,5} 

 

Table 1. Considered hyperparameter values. 

Since no prior knowledge is available on the maximum life duration of turbofan engines, 
the variable 𝑇௫ has been set equal to 266.2 (cycles): this value corresponds to the 
110% of the longest life duration among the 218 available degradation trajectories (i.e., 
𝑇௫ = 242 ∗

ଵଵ

ଵ
= 266.2). Notice that the training of the SR method uses only the 

complete degradation trajectories, i.e., 9 for folds 1-10 and 8 for folds 11, whereas, the 
EvSR uses all the available degradation trajectories, i.e., 19 for folds 1-10 and 17 for 
folds 11. 

6.2. Results 

Table 2 compares the performances of the developed EvSR method with those of the 
SR method considering complete degradation test trajectories. Table 2 reports the 
average of the performance metrics over the 11 folds and its standard deviation. With 



respect to the EvSR, we have considered the cases in which the model is trained with 
only complete degradation trajectories (EvSR1) and with complete and incomplete 
degradation trajectories (EvSR2). 

 

Metric 
(complete 

test 
trajectories) 

SR 
(training set: only 

complete 
degradation 
trajectories) 

EvSR1 
(training set: only complete 
degradation trajectories) 

EvSR2 
(training set: complete 

and right-censored 
degradation trajectories) 

RMSE 
(to be 

minimized) 

37.14 ± 6.32 35.19 ±  5.75 𝟑𝟑. 𝟔𝟑 ± 𝟒. 𝟑𝟗 

𝑰𝑺𝟎.𝟗𝟎 
(to be 

minimized) 

186.31 ± 55.67 166.55 ± 44.02 𝟏𝟑𝟓. 𝟓𝟐 ± 𝟏𝟖. 𝟗𝟒 

 

Table 2. Prognostic performances evaluated considering complete test degradation trajectories. 

EvSR2 performs significantly better than SR from the points of view of prediction 
accuracy, being the RMSE of EvSR2 9.46% lower than that of SR and of prediction 
interval quality, being EvSR2 𝐼𝑆(0.90) 27.25% lower than that of SR. Since the 
performance of EvSR1 is almost comparable with that of SR, we can conclude that the 
inclusion of the right-censored degradation trajectories in the training set for model 
training, allows increasing the EvSR2 performance, which distinguishes EvSR1 from 
EvSR2. Figure 2 shows an example of RUL point predictions obtained by the 
considered methods applied on a complete degradation trajectory. The lower RMSE of 
EvSR2 is mainly due to more accurate predictions at the beginning of the life of the 
considered test trajectory.  



 

Figure 2. Predicted RUL by SR (hexagram), EvSR1(square) and EvSR2 (triangle) on a complete test 
degradation trajectory. 

Figure 3 shows an example of RUL prediction intervals obtained on a different test 
trajectory. Also in this case, the inclusion of right-censored degradation trajectories in 
the training set allows improving interval predictions quality, especially at the 
beginning of the component life.  

 

Figure 3. Interval predictions provided by SR, EvSR1 and EvSR2 on a complete test degradation 
trajectory. 

Table 3 compares the performances of the developed EvSR2 algorithm with those of 
SR and EvSR1, for right-censored degradation test trajectories. 

R
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Metric 
(right-censored test 

trajectories) 

SR 
(training set: only 

complete 
degradation 
trajectories) 

EvSR1 
(training set: only 

complete degradation 
trajectories) 

EvSR2 
(training set:  complete and right-
censored degradation trajectories) 

D 
(to be maximized) 

0.58 ± 0.15 0.62 ±  0.16 0.62 ±𝟎. 𝟏𝟎 

𝑷𝑰𝑪𝟎.𝟗𝟎 
(to be maximized) 

0.46 ± 0.11 0.47 ± 0.09 𝟎. 𝟓𝟏 ± 𝟎. 𝟎𝟓 

 

Table 3. Prognostic performance for right-censored test degradation trajectories. 

 

Although the results are more uncertain, being the test set less informative than that 
used for the computation of the RMSE and 𝐼𝑆.ଽ metrics (Table 2), they lead to similar 
conclusions. 

6.3. Case Study 2: Prediction of the RUL of knives used in the packaging 
industry 

We consider a heterogeneous fleet of 𝑁 = 23 knives used in the manufacturing industry 
to cut packaging material. The prognostic task is complicated by the fact that few run-
to-failure degradation trajectories are available and a failure threshold is not available. 
These data contain 𝑁ி = 10 and 𝑁ு = 13 complete and right-censored degradation 
trajectories, respectively. To deal with this type of data, we have applied a pre-
processing procedure followed by a feature extraction step, which has allowed the 
identification of 𝑀 = 2 relevant features describing the component degradation 
evolution. More details on the dataset and feature extraction procedure can be found 
in [15, 39]. Figure 4 shows the evolution of the two extracted features during a run-to-
failure trajectory of a knife. 



 

Figure 4. Time evolution of the  𝑀 = 2 relevant features from one knife. 

The performance of SR and EvSR are evaluated resorting to a twice nested Leave-One-
Out Cross Validation (LOOCV) in which the outer loop has been used to compute the 
metrics, whereas the inner loop to set the hyperparameters, as discussed in Subsection 
5.3. Table 4 reports the considered values of the parameters 𝛽, 𝛾ு and 𝛾ி. 

 

Hyperparameter Considered values 

𝛽 {2ିଷ, 2ିଶ, 2ିଵ, 2, 2ଵ, 2ଶ, 2ଷ, 2ସ, 2ହ} 

𝛾ி , 𝛾ு {0.05, 0.15, 0.25, 0.35, 0.45, 0.55, 0.65, 0.75, 0.85, 0.95} 

𝑘 {1,2} 

 

Table 4. Considered hyperparameter values for grid search. 

Since no prior knowledge is available on the maximum life duration of knives, the 
variable 𝑇௫ has been set equal to 25.3 (time units): this value corresponds to the 
110% of the longest life duration among the 23 available degradation trajectories (i.e., 
𝑇௫ = 23 ∗

ଵଵ

ଵ
= 25.3). Notice that the training set is formed by 9 trajectories for the 

SR and EvSR1 and by 20 for the EvSR2 method. 

6.4.  Results 

Tables 5 and 6 compare the performances of the developed EvSR methods with those 
of the SR method for complete degradation test trajectories. The averages of the 
performance metrics over the LOOCVs and its standard deviation are reported.  

Metric 
(complete test 
trajectories) 

SR EvSR1 EvSR2 

F
e

a
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(training set: only 
complete degradation 

trajectories) 

(training set: only 
complete degradation 

trajectories) 

(training set:  complete and 
right-censored degradation 

trajectories) 

RMSE 
(to be minimized) 

1.74±1.20 1.79± 1.05 1.56±𝟎. 𝟖𝟎 

𝑰𝑺𝟎.𝟗𝟎 
(to be minimized) 

14.85±8.18 14.38 ± 4.17 𝟏𝟑. 𝟗𝟒 ±  𝟐. 𝟎𝟗 

 

Table 5. Prognostic performance evaluated considering complete test degradation trajectories. 

Metric 
(right-

censored test 
trajectories) 

SR 
(training set: only 

complete degradation 
trajectories) 

EvSR1 
(training set: only complete 
degradation trajectories) 

EvSR2 
(training set:  complete and 
right-censored degradation 

trajectories) 

D 
(to be 

maximized) 

0.44± 0.41 0..47±𝟎. 𝟑𝟑 0.47± 𝟎. 𝟑𝟑 

𝑷𝑰𝑪𝟎.𝟗𝟎 
(to be 

maximized) 

0.20 ±  0.15 0.72 ±  0.13 𝟎. 𝟖𝟏 ± 𝟎. 𝟏𝟑 

 

Table 6. Performance metrics for right-censored test degradation trajectories. 

 

We can conclude that the better performance provided by the EvSR2 model with 
respect to that of the SR are due to the use of incomplete degradation trajectories in 
the training set. This is confirmed by the fact that the EvSR2 outperforms the EvSR1 
considering the RMSE, 𝐼𝑆.ଽ and 𝐼𝑃𝐶.ଽ metrics. 

7. CONCLUSIONS 

In this work, we have developed a novel method for estimating the RUL of industrial 
equipment based on SR measure and EvT. This method allows exploiting all available 
information, including that contained in the right-censored degradation trajectories. 
Furthermore, the method is able to properly represent the uncertainty in the RUL 
prediction by means of pignistic quantiles. The method has been shown able to 
outperform a similarity-regression based method on two case studies. The developed 
method is expected to be useful for the prediction of the RUL of components which 
undergo periodic maintenance, are safety critical or high-value, and, therefore, for 
which few run-to-failure degradation trajectories are available. Furthermore, the 
method can be easily extended to more general applications beyond PHM, for which 
time- to-event analysis is required. In these cases, the proposed method can manage 
left-censored or interval censored time series data.  



One limitation of the developed method is the computational complexity of the 
Dempster’s rule of combination, which grows exponentially in the number of evidential 
sources [40]. Thus, the use of the proposed method when many sources of evidence are 
available and real-time RUL predictions are required can be critical. This problem can 
be partially overcome by reducing the number of evidences to be aggregate, for 
example, limiting the combinations to the 𝐾-nearest training points or by using some 
approximation method based on Monte Carlo simulations [41]. Another issue of the 
proposed method concerns the fact the it requires some prior knowledge of the 
maximum life duration of the equipment under investigation. Since this quantity is 
typically known with uncertainty during the equipment design phase, future works will 
be devoted to properly take into account this additional source of uncertainty in the 
developed methodology. 
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