Format of the submitted result

The test set contains the degradation trajectories of $M_{test} = 50$ systems, each of which contains J = 4 components. The participants to this challenge are required to provide an estimate $\hat{\tau}^{j,m}$ of $\tau^{j,m}$, i.e. ground truth time of the first entry of a component into an abnormal state, for any $m = 1, ..., M_{test}$ and j = 1, ..., J.

With respect to submission, the participants to this challenge are required to organize their results as a three-column table in the format of *csv* or *mat* file, where

- the first column is the index of the system $m = \lfloor n_{row}/(J + \varepsilon) \rfloor + 1$, where $n_{row} = 1, ..., M_{test} \cdot J$ is the index of row and $\varepsilon = 0.01$ is a small number;
- the second column is the index of the component of each system $j = n_{row} [n_{row}/(J + \varepsilon)] \cdot J$;
- the third column is the estimate $\hat{\tau}^{j,m}$, if no entry into an abnormal state is detected, $\hat{\tau}^{j,m}$ should be set to NaN (Not a Number).

Below is an example of the required format:

n _{row}	m (column 1)	<i>j</i> (column 2)	$\hat{ au}^{j,m}$ (column 3)
1	1	1	XX
2	1	2	XX
3	1	3	XX
4	1	4	XX
5	2	1	XX
6	2	2	XX
7	2	3	XX
8	2	4	XX
200	50	4	XX