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Challenges to IoT-enabled Predictive Maintenance
for Industry 4.0

Michele Compare, Piero Baraldi, and Enrico Zio, Senior Member, IEEE

Abstract—The Industry 4.0 paradigm is boosting the relevance
of Predictive Maintenance (PdM) for manufacturing and pro-
duction industries. PdM strongly relies on Internet of Things
(IoT), which digitalizes the physical actions allowing human-to-
human, human-to-machine and machine-to-machine connections
for intelligent perception. Several issues still need to be addressed
for reaching the maturity stage for widespread application of
PdM. To do this, IoT needs to be empowered with data science ca-
pabilities, to reach the ultimate objective of digitalization, which
is supporting decision making to optimally act on the physical
systems. In this paper, we present a comprehensive outlook of
the current PdM issues, with the final aim of providing a deeper
understanding of the limitations and strengths, challenges and
opportunities of this dynamic maintenance paradigm. This is
done through extensive research and analysis of the scientific and
technical literature. On this basis, the work outlines some main
research issues to be addressed for the successful development
and deployment of IoT-enabled PdM in industry.

Index Terms—Predictive Maintenance, IoT, Industry 4.0.

I. INTRODUCTION

Industry 4.0, the fourth industrial revolution ([1], [2], [3]),
aims at creating smart factories, equipped with disruptive tech-
nologies such as advanced robotics, 3-D printing, high com-
puting power and connectivity, etc., which are integrated with
analytical and cognitive technologies that enable machine-to-
machine (M2M) and machine-to-human (M2H) communica-
tion. The smart factory provides the opportunity of offering
new services and products to customers, with efficiency, stan-
dards of quality and reliability higher than before. These allow
expanding the value chain by generating new business models
that create value for customers and revenue for manufacturing
companies ([4], [5]).
One of the opportunities (among others) most spoken of in

Industry 4.0 is Predictive Maintenance (PdM), which makes
use of condition monitoring data to detect anomalies (i.e.,
recognize deviations from normal operating conditions) in
production processes, manufacturing equipment and products,
diagnose (i.e., characterize the occurring abnormal state) and
prognose (i.e., predict the future evolution of the abnormal
state up to failure). The set of detection, diagnostic and

Michele Compare, Piero Baraldi and Enrico Zio are with the Department
of Energy, Politecnico di Milano, Italy. e-mail: michele.compare@polimi.it,
piero.baraldi@polimi.it, enrico.zio@polimi.it

Michele Compare and Enrico Zio are with Aramis s.r.l., Milano, Italy. e-
mail: michele.compare@aramis3d.com, enrico.zio@aramis3d.com

Enrico Zio is an Eminent Scholar, Department of Nuclear Engineering,
College of Engineering, Kyung Hee University, Republic of Korea and with
MINES ParisTech, PSL Research University, CRC, Sophia Antipolis, France.
e-mail: enrico.zio@mines-paristech.fr

Manuscript received TBD; revised TBD.

prognostic tasks is often referred to as Prognostics and Health
Management (PHM, [8], [9], [10], [11], [12]). The capability
of performing these tasks with sufficient accuracy provides
the opportunity of setting efficient, just-in-time and just-right
maintenance strategies: in other words, providing the right part
to the right place at the right time. This opportunity is big,
because doing this would maximize production profits and
minimize all costs and losses, including asset ones ([13]).
Boosted by the intuitive and appealing potential of PdM,
the industry is making significant investments for equipping
itself with the elements necessary for deploying PdM. For
example, the investments by the Italian industry in research &
development & innovation for Industry 4.0 increased by 15%
in 2017, a significant part of which allocated to PdM [17],
and similar investments are reported in other countries (e.g.,
[18]). This situation has sparked the birth of a large number of
PdM specialized companies, commercial softwares, dedicated
journals and conferences, etc.
The Internet of Things (IoT) is a main pillar of PdM ([6],
[7]), as it allows translating physical actions from machines
into digital signals used for PdM. Namely, IoT continuously
streams data from sensors such as temperature, vibration, etc.
and from other sources, such as a machine Programmable
Logic Controller (PLC), Manufacturing Execution system
(MES) terminals, Computerized Maintenance Management
systems (CMMSs, [14], [15], [16]), or even an Enterprise
Resource Planning (ERP) system. These pieces of information
provide the basis for setting PdM approaches.
Up to now, the focus of the effort made has been mainly on the
development of hardware (i.e., IoT, smart meters, etc. [6], [7],
[19], [20]) and software (e.g., PHM tools, platforms for IoT
interconnection and clouding, etc. [21], [22], [23]), for tracking
the health state of monitored components. On the other hand,
the industrial-scale deployment of PdM involves many other
aspects and impacts various sectors of the workplace involved
in maintenance (i.e., workers can use smart systems, main-
tenance engineers can analyze big data for the maintenance
process), logistics (spare parts and warehouse management
can be driven by the PHM results), Occupational Health,
Safety & Environment (OHSE, smart system information can
be used for updated monitoring of risks), design (the use of
smart components may lead to different reliability allocation
solutions), top management (new business opportunities can
arise in services), etc. [6]. To bridge the gap, IoT needs to be
integrated with data science and modeling capabilities, to reach
the ultimate objective of digitalization, which is supporting
decision making to optimally act on the physical systems.
In this paper, we present a comprehensive outlook of the
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Fig. 1. PdM development activities

current PdM issues, with the final aim of providing a deeper
understanding of the limitations and strengths, challenges and
opportunities of this dynamic maintenance paradigm. This is
done through extensive research and analysis of the scientific
and technical literature. On this basis, the work outlines
some main research issues to be addressed for the successful
development and deployment of IoT-enabled PdM in industry.
The remainder of the paper is presented according to the PdM
development activities represented in Figure 1. The selection
of the components which would benefit most from PdM is a
fundamental issue to address for the effective application of
PdM. This is overviewed in Section II. Once the components
eligible for PdM have been identified, the next step is to
properly design the IoT infrastructure in support to PdM. The
issues related to this topic are presented in Section III. Section
IV focuses on the issues related to the development of the al-
gorithms and methods for PdM, which are generally addressed
once the monitoring data from IoT are available. The last step
concerns the exploitation of IoT-enabled monitoring, to really
ensure that PdM brings an added value. The decision making
issues to achieve this objective are presented in Section V.
Finally, conclusions of the work are given in Section VI.

II. WHICH COMPONENTS FOR PREDICTIVE MAINTENANCE

Maintenance approaches are generally divided into two
main groups: corrective maintenance (CM) and preventive
maintenance. Under CM, the components are operated until
failure; then, repair or renovation actions are performed.
Preventive maintenance, instead, encompasses all actions per-
formed in an attempt to retain an item in specified conditions,
by providing systematic inspection, detection and prevention
of incipient failures (e.g., [8], [24], [25]). Accordingly, preven-
tive approaches can be further divided into three sub-groups
([8], [26]): Scheduled Maintenance (SM), if the actions are
performed based on a pre-fixed basis, Condition-Based Main-
tenance (CBM), which uses condition monitoring to identify
problems at an early stage and perform maintenance when the
degradation level reaches a threshold, and PdM, which can be
regarded as an advancement of CBM: the degradation of the
component is predicted in the future and its Remaining Useful
Life (RUL) is estimated.
A tempting misconception within the Industry 4.0 paradigm
is that PdM is always the best maintenance policy. This is not

so. Rather, the opportunity for maintenance in Industry 4.0
lies in the possibility of defining the optimal maintenance for
every component, taking into account its specificity within the
system, e.g., applicable safety and environmental legislation,
quality standard, importance for business, physical and func-
tional characteristics, etc.
Reliability Centered Maintenance (RCM, [27], [28], [29]) was
proposed in the 1970’s (i.e., at the beginning of the third
industrial revolution determined by automation) to address
the issue of selecting the best maintenance strategy for every
component in a system. Nowadays, RCM is standardized
for the different industrial sectors (e.g., [25], [30]) and is
supported by the availability of advanced CMMS, with many
success cases reported (e.g., [27], [31], [32]).
The main idea of RCM is to concentrate the maintenance ef-
forts on the components of the asset most critical for safety and
business, and apply to them the most effective maintenance
approach, as resulting from the analysis of their reliability
characteristics. To do this, RCM relies on a decision flowchart,
whose first question is about the possibility of monitoring the
condition of the component, i.e., a physical variable indicative
of the component degradation state, and defining a threshold
value for it, at which to do maintenance on the component
to avoid its failure with major consequences ([25], [30]). In
case of affirmative answer, CBM can be considered technically
feasible; otherwise, the decision flowchart proceeds with other
questions about the reliability characteristics of the component
to check the applicability of scheduled maintenance; if also
this is not applicable, the component is inevitably run to failure
and taken care of by corrective maintenance.
The rationale underlying RCM is applicable to Industry 4.0,
but with some major limitations:
• The first RCM question on the possibility of condition

monitoring for the applicability of CBM can be mislead-
ing in the practice of Industry 4.0: whilst it goes without
saying that CBM is doable in case of affirmative answer
to the question, a negative answer does not necessarily
imply that CBM must be abandoned. In fact, PHM
approaches have been developed (e.g., Principal Compo-
nent Analysis (PCA), Auto-Associative Kernel regression
(AAKR), Self Organizing Maps (SOM), etc. [33], [34],
[35], [36], [37]) for detecting early failures in a com-
ponent based on multiple signals not directly measuring
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the condition of that component. Indeed, PHM methods
of feature extraction and selection (e.g., wavelet tranform
[38], [39], [40]) can find combinations of features from
the available signals that although not directly measuring
the component degradation state, can infer it, and CBM
can be developed on this basis.

• PdM does not enter the decision flowchart for main-
tenance selection. A positive answer to the first RCM
question on CBM does not necessarily mean that also
PdM is feasible, as the condition monitoring for CBM
may not provide the information needed for PdM (e.g.,
[41]).

• Cost-effectiveness of the maintenance strategy must be
considered, as CBM and PdM require investment costs
in software, instrumentation, knowledge, etc. which must
be justified by the benefits they can yield.

From these considerations, it emerges that RCM needs to be
extended for its application to the Industry 4.0 context: clear
and solid ways are needed to guide the decision makers in the
identification of those components for which PdM would be
the right maintenance choice.

A. Economics of PdM

Development of IoT-enabled PdM for Industry 4.0 makes
sense if it is proved to be more profitable than the other
maintenance approaches. Maintenance cost models must,
then, be developed to evaluate the economic benefits of PdM.
However, only few attempts have been made in this sense
([42]), in spite of relevance that this issue for the decision ı̀s
in investing in IoT for PdM.
A few works (e.g., [43], [44], [45], [46], [47], [48], [49])
have attempted to evaluate the cost-benefit of PdM through
the commonly used financial metrics such as Return on
Investment (RoI), Net Cash Flow, Cumulative Cash Flow,
Payback, Net Present Value, and Internal Rate of Return.
These works, however, rely on simulation instead of
developing general analytical approaches ([42]).
Another cost-benefit metric proposed is the Technical Value
(TV, [50]), which accounts for the performance in detection,
diagnostics and prognostics of critical failure modes and the
costs associated with false alarms. However, TV contains
cost terms that are difficult to estimate (e.g., the savings
realized by isolating a fault in advance) and it makes use of
constant performance metrics, i.e., independent on time (e.g.,
the probability of a failure mode). Finally, TV does not give
due account to erroneous detection, diagnosis and prognosis.
Partially Observable Markov Decision Processes (POMDP,
[51], [52], [53]), have been used to estimate the Value of
Information (VoI, [54]) of data measured by sensors installed
on civil infrastructures, accounting for the uncertainty in
the condition monitoring. Roughly speaking, VoI is the
maximum cost a decision-maker is willing to pay for getting
the information, which is worth acquiring only if its value
is above its cost ([54]). Although this framework seems
very promising, there are two main issues preventing its
application to Industry 4.0. Namely, the VoI definition relates
to the expected savings that can be yielded by reducing

the uncertainty in the estimations of the degradation state
thanks to the measurement collected by sensors or even
inspections, i.e., VoI is used for selecting explorative and
inspection actions ([51], [52], [53]). Then, it is a relative
value, which does not allow for a fair comparison of PdM
with the other approaches not based on sensor monitoring.
The second issue limiting the VoI approach application is
that the algorithms adopted are very time consuming and
applicable to scaled-down case studies, only, in which the
number of state-action pairs is not large.
A model for evaluating the system-level value of PdM has
been proposed in [55], within a real options framework.
PdM is seen as a tool for the Decision Maker (DM) to
invest options of performing maintenance actions in the
future and a cost–benefit–risk model is developed. Some
issues remain for its application to industrial practice,
including the need of estimating the difference in the costs
of performing CM instead of a RUL-driven maintenance.
Moreover, although [55] considers time-dependent RUL
predictions, these are not linked to the performance of the
predictive algorithms (e.g., accuracy, precision, etc.), and a
Brownian motion process is used to describe the evolution of
the economic indicators related to RUL predictions entering
the options model. In addition, the model considers CM
as the only possible alternative to PdM, and not other
preventive maintenance approaches: however, there can be
cases in which the economic performances of CM and
SM are superior to those of CBM and PdM ([8]). Refined
analytical methods are developed in [42], for the cost-benefit
analysis of canary-based PHM; in [56], [57], to maximize the
component resilience, which is defined as a combination of
reliability and restoration, the latter being a function of the
PHM characteristics; in [58], where a life-cycle maintenance
cost analysis framework is developed, which considers
time-dependent false and missed alarms for fault diagnosis;
in [59] and [60], where time-variant metrics of the literature
([61]) are linked to component reliability and availability,
respectively, to derive the economic performance of PHM
capabilities of different quality levels. These analytical
approaches, however, do not fully capture the dynamics of
the CBM context, where a decision must be taken every time
the PHM algorithms are run.
The enhancement of the economics models is a mandatory
condition for the industry to unleash investments in IoT for
PdM. The reviewed literature is schematized in Table II-A.

B. PdM for production and product

To answer the topical question ”is PdM convenient for this
equipment?”, we need to distinguish the case where PdM is
considered for a product from that in which it is applied to
the equipment of a production process.
In the former case, the economic justification can be relatively
simple: several companies of different industrial sectors (i.e.,
manufacturing [62], aviation [13], [63], [64], mining [65],
energy [22], [66], etc.) look into PdM simply because it
gives commercial competitiveness. Furthermore, new sources



JOURNAL NAME, VOL. , NO. , MONTH YEAR 4

Fig. 2. scheme of a production process in the automotive industry

RoI TV Cost VoI Resilience

Time independent PHM metrics [43], [44] [45], [46], [47]
[48], [49] [50] [42] [51], [52], [53] [56], [57]

Time dependent PHM metrics [58] [59] [60]
TABLE I

ECONOMICS OF PDM: SYNOPTIC

of income can generate thanks to new opportunities of added
values in service, by taking over portions of the clients’
business risks and other (financial) burdens: the possibility of
new business may be a sound justification per se for investing
in PdM.
In case of manufacturing processes, the value of PdM and, thus
of the IoT infrastucture, is more difficult to assess. To show
this, we consider the example of a manufacturing process in
the automotive industry but draw some general considerations.
Figure 2 shows the scheme of a manufacturing process made
of different steps, possibly spaced by buffers. Generally speak-
ing, the more stringent the application of the just-in-time
paradigm, the smaller the buffers; the later the process step,
the larger the value of the half-processed units and, thus, the
smaller the buffers. From the PdM perspective, the earlier
production phases (i.e., shell manufacturing through welding,
milling, etc.) are the most promising ones, as these are per-
formed in the capital-intensive parts of the plant, with robots,
transportation means, welding systems, etc. On the contrary,
in the latest step (i.e., assembly), where the production flow is
more time-sensitive, there are mainly screwdrivers, traveling
cranes, etc., in relatively large redundancy and with the largest
manning level.
In this scheme, the value of PdM heavily depends on the
buffers, whose level Bf to withstand a downtime of D hours
of the upstream production step can be estimated as:

Bf =
1

takT
×D (1)

where takT is the takt time in hours (i.e., the average time
between the start of production of one unit and the start of
production of the next unit). To consider reasonable values,
we can conservatively assume an extremely long downtime
D = 10 h and takT = 6 min = 0.1 h; then, we get Bf = 100.
If Cp is the cost of the product at the end of the production
step, the mobilized capital reads Mc = Cp×Bf . For example,
if Cp = 3000 e, then Mc = 300′000 e. Assuming a capital
cost of 10%/year, it turns out that 30′000 e per year is the cost
that PdM has to payoff to avoid business interruptions. This
value is much smaller than any massive investment in IoT for

PdM. Then, this is doable only if we are able to both estimate
the other indirect costs of failure, such as costs for re-filling
the buffer, costs of warehouse, costs related to conservative
settings of scheduled maintenance intervals that result in over-
maintenance expenses, etc., and prove that these costs are
large enough to justify significant investments in PdM. This
emphasizes the need for sound cost models encoding PdM for
IoT investment justification.

III. IOT INFRASTRUCTURE AND DATA MANAGEMENT FOR
PDM

A major misbelief in Industry 4.0 concerns the assump-
tion that larger amounts of acquired data and, thus, more
widespread and performing IoT networks, always result in
better performance of PdM. This is not so, as acquiring,
storing, maintaining and analyzing data entail a cost that
increases with the amount of data. As pointed out in [11],
the final objective of digitalization should be that of acquiring
smart data, rather than big data. To show this, we briefly
report about an experience concerning the data acquisition
from bearings installed in a manufacturing plant, to outline
general considerations. In that plant, the raw bearing vibration
data are acquired at a frequency of 1.6 kHz. Due to data
storage limitations, these raw data are not stored into the
servers. Rather, only two features are extracted from the raw
signal, i.e., Root Mean Square (RMS) acceleration and peak-
to-peak vibration, which are then averaged on a period of 0.5
seconds and recorded in the data storage system.
These two features have proved to be effective in identifying
abrupt failures. Nonetheless, their informational content is not
useful for developing a PdM approach. To wit, Figures 3b and
3c refer to a bearing case study and show the available bearing
acceleration RMS and peak-to-peak values, respectively, over a
time window of almost 130 samples (i.e., almost 65 seconds),
whereas Figure 3a shows the raw signal data relevant to the
first part of almost 5 seconds of the same time window.
From their comparison, it is clear that the averaging leads to
hiding the information contained in the raw signal, as signals
averaged on relatively long time windows encode different
working conditions with variable loads and speeds, which
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(a)

(b)

(c)

Fig. 3. (a) Bearing acceleration raw data. (b) Bearing acceleration RMS. (c)
Bearing acceleration peak-to-peak.

the vibration signals are sensitive to. The analysis of these
signals for prediction can lead to misunderstanding in their
interpretation.
Given that RMS and peak-to-peak values cannot be used for
prediction, it is clear that storing them for long time windows
(the bearing life duration is 3-4 years in the application
considered) is not cost-effective, as we do not need to rely
on values relevant to old conditions to capture abrupt changes
([67], [68], [69]).
Based on these considerations, the final strategy proposed can
be to i) collect vibration RMS and peak-to-peak features;
ii) store them for relatively short time windows (i.e., a few
months); iii) complement this information with features useful
for prediction, extracted from the raw data (i.e., wavelet
transforms in the specific case), acquired every couple of
weeks in a tailored, baseline reference setting of working
conditions.
Although the proposed strategy has been, indeed, effective in
the application considered and seems to be of engineering

good sense, nontheless a general framework for optimizing
the management of the IoT infrastructure supporting PdM is
needed. This is still lacking, to the authors best knowledge.
Then, we give insights to formalize the issue, while leaving
its solution as a urgent challenge for researchers.
Consider a simplified model of a data acquisition chain from
a piece of equipment monitored by S sensors, s = 1, ..., S,
which can be positioned in locations l ∈ L = {1, ..., L}
(Figure 4). We introduce matrix P, whose (s, l) entry is set
to 0 when sensor s is not positioned in location l, and to
1, otherwise. Each sensor acquires data at a bit rate fs · b
Gbit/h, where fs is the sampling frequency in h−1 and b the
bit resolution in Gbit. We consider vector f = [f1, ..., fS ].
Sensor data are transmitted to a local computing unit at a
maximum rate R1 Gbit/h (second block in Figure 4). The local
computing unit extracts sets of features Φs = [Φ1

s, ...,Φ
φs
s ],

which are appended to vector Φ = [Φ1, ...,ΦS] (third block
in Figure 4). The features are extracted on a time window
of ∆t hours and every feature extraction requires time dtsj ,
s = 1, ..., S, j = 1, ..., φs. The extracted features are sent to a
server of memory capacity M Gbit, without data compression
(last two blocks in Figure 4). The transferring rate for this
second transmission line is R2 Gbit/h.
Finally, the measurements are performed every τ > ∆t
hours, over a conservatively (i.e., longer) estimated component
lifetime of T hours.
Notice that for the sake of simplicity, the units of measurement
have been kept coherent and proper coefficients are required
to use the units normally adopted in practice. For example, the
sampling frequency is usually measured in KHz: then, we need
to multiply this value by 3′600′000 to get the corresponding
frequency value in h−1; similarly, features are calculated on
time windows of a few seconds, whereby ∆t expressed in
seconds must be divided by 3600 to get the corresponding
value in hours.
The optimization of the sensors allocation can be considered
within the PDA framework ([70]), which seeks the optimal
portfolios of sensor allocation solution X = [P, f ,Φ, τ ] such
that
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max
X

V oI(X) (2)

L∑
l=1

P(s, l) ≤ 1 s ∈ {1, ..., S} (3)

S∑
s=1

P(s, l) ≤ 1 l ∈ {1, ..., L} (4)

fs ≤

(
L∑
l=1

P(s, l)

)
· fmax s ∈ {1, ..., S} (5)

φs ≤
L∑
l=1

P(s, l) s ∈ {1, ..., S} (6)

b ·
S∑
s=1

fs ≤ R1 (7)

max(

S∑
s=1

φs∑
j=1

dtsj ,∆tdeg) ≤ ∆t (8)

1

τ

S∑
s=1

|Φs| · b ≤ R2 (9)

T

τ
·
S∑
s=1

|Φs| · b ≤M (10)

S∑
s=1

cs ·
L∑
l=1

P(s, l)+

+cr(R1) + cc(∆t,Φ) + cr(R2) + cm(M) ≤ B (11)

where cs is the cost of a sensor, cr, cc and cm are functions that
link the cost to the required transmission rate, computational
capability and memory capacity, respectively, whereas B is
the available budget, which must not be exceeded (Eq. III). In
words, the VoI function maps the variables in solution X onto
the maximum investment in PdM that a DM is willing to pay
(Eq. 2).
Eqs. 3 and 4 state that, respectively, every sensor can be
installed in a single location, at most, and every location can
accommodate a single sensor, at most. The position and the
number of sensors are fundamental drivers for PdM to be
profitable: the larger the number of sensors, the larger the
information available and, thus, the chances of identifying
and extracting information relevant for the development of
effective PdM, also by exploiting correlations among the
signals [71]. Obviously, the larger the number of sensors, the
larger the investment costs.

Fig. 4. Data acquisition and storage chain

With respect to the sensor positioning, the relationship with
VoI has been investigated in [72], building on a relatively wide
literature (e.g., see [73] for an overview). The model in [72]

should be extended to include costs and benefits related to
overall system resilience [56], flexibility [74], risk, etc. and the
other decision variables of X. In fact, the acquisition frequency
is also a fundamental parameter for the PHM algorithm to
give information valuable for PdM: the frequency should be
large enough to catch the information relevant for PdM, as
emerged from the bearing application mentioned above; on
the contrary, if it is too large, there can be an overload on
both the transmission link and the local computing unit, with
consequent increments of costs cr and cc. In this respect, Eq.
5 states that rate fs is lager than 0 only when sensor s is
installed, and it is always smaller than fmax, whereas Eq. 6
indicates that features can be extracted from sensor s only if
this has been installed. Moreover, Eq. 7 sets a constraint on
the capacity of the data transmission link, which must be large
enough to allow continuous data transmission. The larger the
value of R1, the larger the cost: cr should be thought of as
the result of an embedded optimization problem, which finds
the technological solution that guarantees the fulfillment of
the constraint in Eq. 7 at the smallest cost. Yet, the larger
the rate R1, the larger the time required to process the data
by the computing unit that extracts the features, the larger
the computational costs: cc(∆t,Φ) is the minimum cost of
the technological solution that guarantees that features Φ are
calculated before a new dataset is acquired. Given Φ, the
smaller the value of ∆t, the larger the computational capability
required.
The main requirement for the duration of data collections, ∆t,
is that it be large enough to capture all the characteristics of
the component behavior (Eq. 8). We refer to this minimum
duration as ∆tdeg , whose value depends on the specific
application. For example, in the bearing case study, ∆tdeg
must be large enough that the vibrational signal encodes all
the vibration conditions. If the acquisition time interval is too
short, then the collected signal is not able to represent the
bearing functional behavior, whereas if it is too large there can
be limitations to the storage of the collected data on the local
computing unit. Therefore, also in this case, it is necessary to
identify a compromise between the richness of information and
the storage burden. Moreover, as expressed in Eq. 8, the value
of ∆t must be larger than the computational time required to
calculate the features.
Finally, the time interval τ between two successive data
collections is also an important decision variable, which should
be tuned to the specific characteristics of the degradation
process to ensure that the maximum rate R2 is not exceeded
(Eq. 9). In the bearing application, the degradation process is
slow (T > 4 years), whereby a compromise solution must be
found between the granularity of the information over time,
the required data transmission rate and the storage capacity,
which must be large enough to store data over the whole life
of the component T (Eq. 10).
To make the final investment decision, the optimal solutions
corresponding to different budget levels are, then, found and
compared (e.g., [75], [76]).
This optimization issue is further challenged by another trend
within the Industry 4.0: edge computing ([23], [77]). Namely,
data computation can be done at the “edge”, meaning that
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pre-processing can be performed on the machines where data
are gathered from to directly inform machine operators and
maintenance technicians. As data is beginning to approach the
zettabytes (i.e., 1021 bytes), edge computing can be exploited
to reduce the overall burden on a computer network by
properly distributing the processing effort to a network outer
nodes, which alleviates the core network traffic and improves
application performances ([77]).

A. Dependability of IoT

An additional relevant topic deserving further investigation
is the interdependence of PdM and the dependability of IoT,
which is defined in [78] as ‘the ability to deliver services that
can justifiably be trusted’.
Intuitively, IoT communications for PdM have to satisfy strin-
gent requirements in terms of timeliness and correctness, as the
information they exchange is critical for ensuring an effective
and safe behavior of the monitored components. Hence, the
communication network must be engineered to meet stringent
delay deadlines, be robust to packet losses and, finally, be safe
and resilient to damages [79].
To this aim, different technologies are currently being devel-
oped, especially within the 5G paradigm, which are critically
reviewed in [79], [80], [81], [82], [83], to cite a few.
In spite of these advancements, however, a fundamental re-
search work is still required to include in PdM modeling and
analysis the trust to the IoT. In fact, in industrial practice the
dependability of communication is often characterized through
parameters such as packet delivery ratio, outage probability,
Signal to Interference and Noise Ratio (SINR), Bit Error Rate
(BER) [84]. Although these metrics are intuitively related to
the conventional understanding of dependable communication,
nonetheless they are not sufficient to fully characterize the
capability of IoT for supporting PdM. This is due to the fact
that IoT are extremely complex and distributed Cyber-Physical
systems of systems (CPSoS), with a multitude of intercon-
nections, also with the human environment, under strict legal
and regulatory constraints ([85], [86]). This means that to
fully capture the trustworthiness of IoT for PdM applications,
we must integrate in PdM modeling several concepts such as
cyber-security, reliability, resilience, etc. ([85]). To the authors’
best knowledge, this is an almost unexplored field ([88]),
especially for the 5G connectivity technology, which promises
to be at once truly ubiquitous, reliable, scalable and cost-
efficient.

IV. PHM ALGORITHMS FOR PDM
A. PHM algorithms taxonomy

A wide range of methods have been developed for detection,
diagnostics and prognostics, as extensively discussed in the
literature ([9], [10], [89], [90], [91], [92], [93], [94]), and
with many successful applications reported (e.g., see [6] for
an overview).
In general, PHM methods can be divided into two main
classes, although hybrid methods exist too ([95]):
• Data-driven methods, which use monitored operational

data related to the component health conditions. These

are collected in experiments and/or on-field, and can be
exploited when the understanding of component operation
is not straightforward or when the component is so
complex that developing an accurate physical model is
prohibitively expensive ([89]). IoT-enabled PdM relies
on this class of algorithms, for which a taxonomy is
proposed in Table II. Given the huge number of works in
the field, the reference list is certainly partial, although
it includes literature reviews on specific classes of algo-
rithms. Notice that in some cases the boundaries between
the algorithms classes become weak.

• Model-Based methods, in which physical models of the
component are used for the estimation of its healthy
conditions and the prediction of its degradation. The
benefit of resorting to these models lies in that they
can be applied to components for which data from
abnormal operating conditions are lacking (e.g., safety-
critical systems, capital parts, equipment conservatively
maintained, etc.). In these cases, data-driven models can
neither diagnose the anomalous behavior of the compo-
nent nor predict its failure trajectory. On the contrary,
physics-based or physics-of-failure models (e.g., [6]) can
be developed for simulating the degradation mechanisms
affecting the component (e.g., [64], [114], [115], [108])
and used for RUL prediction. In the Industry 4.0 era,
these models are at the basis of the development of
Digital Twins. However, the development of physics-
based models is not always practicable because it is very
costly and, also, these models often do not fully take into
account the effects of the external conditions and rely on
parameters that are difficult to estimate ([116]) .
Notice that these models are not relevant for IoT-enabled
PdM, which rely on data provided by IoT.

B. Challenges

A virtuous loop of research and industry is sustaining this,
whereby research solutions continue to provide opportunities
of improvement to industry, while industry provides new chal-
lenges to research. Despite the availability of PHM algorithms,
the companies that want to benefit from Industry 4.0 still
need to trade off the opportunities of PdM against the capital
expenditures required to purchase the necessary instrumenta-
tion, software and specialized knowledge. This downside is
perceived large at the beginning of the development of PdM,
when real data of normal and abnormal equipment behaviors
are lacking or scarce, and in case of new systems, when there
is no experience on their operation. This situation can lead the
companies to distrust the investment in PdM solutions.
For a systematic and rationale decision making on PdM
investment, the actual challenge is to embedd the cost mod-
els presented in Sections II and V in adaptive and robust
frameworks for guiding PdM development: these should allow
updating and adjusting the PHM algorithms for PdM on the
basis of the Knowledge, Information and Data (KID, [11]) that
incrementally become available as the development goes on
from the design to its operation, which tends to continuously
evolve, due to deterioration of components and sensors, main-
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TABLE II
PHM ALGORITHMS OUTLOOK

Algorithm Brief Description Pros Cons
Markov Models (MM)
including:

• Hidden Markov Models
(HMM);

• Semi-Markov Models
(SMM);

• Hidden SMM;
([96], [97], [98], [99]).

A Markov model is a sequence of
infinitely many states representing the
component
degradation from new to failed.
Transition probabilities among the
states depend on the current state and
not on the path followed to reach it.
Differently from MM, the SMM transi-
tions depends also on the sojourn time
in the current state.
HMM assumes the degradation to be
not directly observable.

• Appropriate when degra-
dation can be described
by discrete states;

• Simple in the analytical
definition and easy to be
understood even by non-
expert analysts;

• Can rely on a sound lit-
erature.

• Can be computationally
expensive and can re-
quire a large number of
simulations;

• Require the definition
of the degradation states
and the estimate of the
transition state probabil-
ities.

Artificial Neural Networks
(ANN), including:

• Convolutional NN;
• Extreme Learning Ma-

chines (ELM);
• Radial Basis Networks

(RBN;
• Recurrent Neural Net-

works (RNN);
• Echo State Networks

(ESN);
• Auto-Encoders;
• Self Organizing Maps

(SOM);
• Long Short Term mem-

ory (LSTM);
([64], [100], [101], [102], [103]
[104], [105], [106], [107],
[108])

ANN consist of processing elements
called neurons, which interact with
each other through numerically
weighted connections among the
input, hidden and output layers.
Training data are used to build a
regression model by adjusting the
connection weights between neurons
to reduce the errors between the
network and the target outputs [107].
The trained ANN process new data
and give an estimate of the expected
output [95].
RNN and its advanced versions (ESN,
LSTM, etc.) are ANN, whose neurons
contain feedback connections from
the hidden or output layers to the
preceding layers. These connections
add to the ANN the ability of
processing temporal dependencies
between the inputs and the outputs
and, thus, dynamic information.
Auto-Eorders are ANN used to
learn efficient data codings in an
unsupervised manner.

• Provide good functional
mappings between input
and output data points in
many practical PHM in-
stances ([100]).

• ANN require large
amount of training
data that have to
be representative of
true data range and
variability [95];

• Performance depends
also on the capability of
the user to identify the
optimum setting (i.e.,
number of neurons,
layers, activation
functions, etc.);

• The operating and
training processes are
“black boxes”, as the
understanding of the
built models, except
from qualitative, is hard
to catch ([92]);

• ANN can have a slow
convergence during the
training process [89].

Statistical techniques,
including:

• Principal Components
Analysis;

• Regression Models (Lin-
ear, Logistic, etc.);

• ...
([33], [34], [93], [109], [110]).

Rely on both the Bayesian and fre-
quentist frameworks, thus giving a
probabilistic interpreation to the re-
sults.

• Rigorous theoretical
background;

• Uncertainty on parame-
ters estimation.

• Lots of data required for
frequentist approaches;

• Bayesian approaches can
be computationally ex-
pensive.

Instance-Based methods,
including:

• Fuzzy Similarity;
• K-Nearest Neighbors;
• Kernel Machines

(e.g., Support Vector
Machines, Relevance
Vector Machines,
Gaussian Fields, Auto
Associative Kernel
Regression);

([33], [38], [111], [112],
[113]).

Rely on stored data as training set;
when predicting a value of a new in-
stance, they compute its distances from
or similarities to the available training
instances.

• Efficient with both small
and large datasets;

• Can provide real-time
analysis and guarantee a
good generalization per-
formance;

• Can handle non-linear
and complex system
modelling;

• Models are built directly
from the training in-
stances themselves.

• Parameters tuning
strongly affects the
performance;

• Heavy memory usage for
storing all training in-
stances;

• Risk of overfitting.

tenance activities, upgrading plan involving the use of new
components and system architectures, and the modifications
of the operational and environmental conditions. These mod-
ifications of the system behavior, which are typically referred
to as concept drifts or operation in an Evolving Environment
(EE, [69]), challenge the PHM algorithms development.
PHM in EE has been recently addressed by transfer learning
[117] and incremental learning approaches [118]. The former

refer to predicting the labels of samples drawn from a target
domain (e.g., system of a fleet working in a new environment),
given labeled samples drawn from a source domain (e.g., data
from a system of the same fleet, with longer experience)
and unlabeled samples drawn from the target domain itself
(i.e., data from the new system). Algorithms for this domain
adaptation are carefully revised in [117], where relavant chal-
lenges are also outlined. These mainly refer to computational
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and analysis burdens, and to reduce the analyst knowledge
about the specific application of interest that is often required
to select an appropriate transformation among many possible
alternatives.
Incremental learning approaches can be divided into passive
and active approaches. The former adapt the empirical model
every time new batches of data become available. This is time
consuming and not always doable, as it requires the availablity
of labeled time series and empirical model retraining. On the
contrary, active approaches allow adjusting the models only
when the occurrence of a concept drift is detected. They are
typically classified into the following categories [119]:
• Sequential analysis-based approaches, which analyze the

newly acquired signals one by one, until the probability
of observing the subsequence under a new distribution is
significantly larger than that under the original distribu-
tion [120].

• Data distribution-based drift detection approaches, which
consider distributions of raw data from two different time-
windows: a fixed window containing information of the
past time series behavior and a sliding window containing
the most recent acquired data [121].

• Learner output-based drift detection approaches, which
are based on the development of a learner (classifier) and
the tracking of its error rate fluctuations [122].

A drawback of the application of active approaches in PHM is
that the activities of concept drift detection, data labeling, and
empirical model updating are sequentially and independently
performed. This requires the use of different algorithms which
exploit the same information, contained in the time series data
stream, for different purposes and at different times.
To conclude, the adaptivity characteristic of the methodologies
and algorithms give the possibility of tracking the development
of the PHM system and the improvement of its performance.
However, this requires computational and analysis burdens.
The challenging issue is on how to simplify and, thus, make
faster and cheaper the development of PHM solutions.

V. DECISION MAKING WITH PDM
Once the PHM algorithms have been developed and their

performance validated, the information about the RUL of the
equipment is exploited for PdM under different perspectives.
We consider the following three: safety, business, and Opera-
tion and Maintenance (O&M).

A. Decision making for safety

Intuitively, prediction capabilities can strongly impact on
safety, as they allow monitoring the risk of failure of the
components giving, thus, the opportunity of preventing failures
by PdM.
Although many experiences are reported in the literature about
the possible applications of PdM to safety critical contexts
(e.g., nuclear [127], [128], [129], aerosapce [130], [131]), a
structured modeling approach that quantifies the benefit of
PdM for safety is still lacking, as witnessed by the fact that
safety standards still consider that many enhancement steps
are necessary to make the PdM technology mature enough to

be implemented in safety critical systems ([131], [132]).
To develop this modeling framework, on the one hand one can
build on the model in [59], in which the relationship between
the PHM algorithms sustaining PdM and the probability of
failure has been formally developed. This allows defining the
values of the thresholds for a set of performance metrics that
guarantee a desired level of safety, with adequate margins
related to the uncertainties.
On the other hand, PHM can be embedded in dynamic
Probabilistic Risk Assessment (PRA) models (e.g., [133]),
to integrate the dynamic predictions, and their uncertainties,
with the actions performed by operators and automatic control
systems. A first attempt is proposed in [134], which, however,
does not consider the dynamic character of predictions.
The capability of modeling the impact of predictions on
safety also allows to balance reliability allocation schemes by
installation of PdM capabilities and by redundancy. This topic
has been partially addressed in [56], [57], [135], but there is
still research work to do for investigating the impact of PdM
on the optimal reliability allocation for safety.
Finally, the impacts of IoT on safety critical aplications is still
an unexplored research area, to the authors best knowledge.

B. Decision making for business

A significant part of the value of PdM comes from indirect
consequences of the prediction capabilities. For example, the
benefit of PdM for wind farms may come not solely from the
obtained increase in availability, but also from the improve-
ment in the logistics for maintenance operations enabled by
the knowledge of the component RULs (e.g., [136], [137]).
In a manufacturing plant, economic benefit from PdM may
come from the warehouse management, which can rely on
the RUL knowledge to set a just-in-time logistic support that
reduces the stored spares.
In the car market, the business of PdM relates to the marketing
opportunities of selling a car with this appealing technology,
which provides the driver with the current health state of
the car and the remaining time up to failure (e.g., brake
pads consumed). Cross-selling opportunities come from the
workshop services: the after-sales department can propose a
service which directly makes an appointment at the preferred
workshop, which is prepared for receiving the car, for a very
fast intervention with discounted spares. This also enhances
the customer loyalty. Additional benefits come from the con-
trol of the dealers’ operations, which gives the possibility of
both improving the replenishment plans of the spare depots
serving the dealers, and allocating the after-sales budgets to
the dealers based on their actual selling performances. Finally,
the prediction capabilities allow proposing a business model of
selling the run kilometers instead of the car. A similar example
is that of the turbine engines for aircrafts [138], in which
the manufacturer sells the fired hours instead of selling the
turbines, in a win-win setting.

C. Decision making for O&M

To fully exploit the prediction capabilities, the PdM
analytics must enter the asset-level management decision
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making, which must consider the impact of maintenance
on logistics, safety, costs, etc. An holistic management of
the asset with respect to maintenance is also referred to as
Prescriptive Maintenance [139]. This entails the integration
of various asset management and maintenance systems to
prescribe optimal solutions to manage maintenance at the
asset level. For example, whilst predictive maintenance might
recommend that the bearings of the application mentioned
in Section III be overhauled, a prescriptive view may also
inform the DM that if the equipment loading conditions
are slowed down, the time to failure can increase up to
the already scheduled maintenance window, also verifying
whether the planned production requirements can still be met.
To do this, prescriptive systems must be ‘cognitive’, which
means relying on advanced technology at the intersection of
big data, machine learning, and artificial intelligence analytics
([139]).
Some developments are proposed in [140], [141], [142], [143],
but on specific, scaled-down applications, not transferable to
industrial practice. This confirms the need for further research
and development on this.

VI. CONCLUSIONS

In the Industry 4.0 era, the available smart and connected de-
vices give companies the opportunity of redefining their busi-
nesses by rethinking nearly everything they do. In particular,
the new technologies, including IoT, enable the development of
PdM, which is transforming the way of thinking maintenance:
from cost to business opportunity.
IoT-enabled PdM is attracting considerable investment from
industries and increasing attention by research, as witnessed,
for example, by the many initiatives and confrontation fo-
rums established by academy and industry for discussion and
experience-sharing of PdM solutions, in various industrial
fields.
The development for PdM has thus far mainly concerned
hardware and software for remote tracking the health state of
monitored equipment. Indeed, we have shown that the PdM
value chain is much longer, including many activities upstream
and downstream the collection of data and the execution of
the maintenance labour. For the full develoment of PdM and
its deployment in practice, it is important to build integrated
cost-benefit models that include the impact of the PdM on the
entire asset management.
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