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Abstract

We develop a decision-support framework based on Partially Observable Markov Decision

Processes (POMDPs) for the management of Gas Transmission Networks (GTNs) operations,

encoding realistic degradation state estimations provided by Prognostics and Health Manage-

ment (PHM) systems, while considering demand variations and the e�ects of the management

decisions on the GTN degradation evolution. This Operation and Maintenance (O&M) frame-

work allows optimally operating a GTN. Furthermore, the economic impact of using PHM

systems with di�erent accuracy levels can be estimated. The approach is shown with reference

to a GTN of the literature.

Keywords: Partially Observable Markov Decision Processes, Prognostics and Health Manage-

ment, degradation state estimation errors, Gas Transmission Network.

1 Introduction

Gas Transmission Networks (GTNs) are Critical Infrastructures (CIs) serving multiple industrial

sectors and domestic users. The management of GTNs entails making decisions about improve-

ments of their structures (i.e., topology, technology of its elements, etc.) and their Operation and

Maintenance (O&M). With respect to structural improvement, for example models to assess the

vulnerability of GTNs to multiple disruptive events are developed in [1; 2], whereas a bottleneck
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analysis to identify the GTN points where the gas �ow reaches the maximum allowed capacity

are carried out in [3]. These models support cost/bene�t analyses driving the decisions about the

most pro�table interventions to be done on the GTN, such as adding a redundant input point

or building new connections. An integrated non-linear optimization model is developed in [4] to

select the location and installation schedule of major physical components in a GTN, including

pipelines and compressor stations.

With respect to operations management, a major issue extensively studied in the literature is gas

�ow optimization. For example, dynamic programming [5; 6], gradient-based approaches [7] and

genetic algorithms [8] have been proposed for optimizing gas �ow in steady-state conditions.

GTN operations management concerns also the proper setting of the compressor stations to guar-

antee that the gas �ow reaches the consumers. In this respect, optimization models are proposed

in [9; 10] to �nd the con�gurations that minimize fuel consumption while guaranteeing the gas

delivery to the network users, whereas settings of the compressor stations loading conditions are

sought in [11] to minimize the total losses due to leakage.

As for maintenance, for example, a risk-based maintenance management approach is propounded in

[12], based on the Portfolio Decision Analysis framework [13], to allocate the maintenance budget

on the most risky GTN elements. Nowadays, the availability of Prognostics and Health Manage-

ment (PHM) capabilities allow continuously tracking the degradation of the GTN elements and

predicting their future evolution. For example, PHM systems are used for online monitoring the

degradation of GTN compressor units in [14] and pipelines in [15]. Intuitively, PHM allows setting

an e�cient, just-in-time and just-right maintenance of GTNs: the right part is provided to the

right place at the right time, handled by the right crew, with consequent bene�ts for pro�t.

However, the full potential of PHM can be larger than this: it can enable setting a dynamic man-

agement of the GTN O&M in which PHM is integrated in a decision framework that captures

the intertwined relation of operations and maintenance decisions. Namely, maintenance decisions

must be driven by the predictions of the degradation of the GTN elements, while giving, at the

same time, due account to the changes that the equipment temporary unavailability introduce in

the network topology and the expected future behavior of gas demand; these modify the capability

of meeting the user needs.

The main issues to be considered for the development of the dynamic O&Mmanagement framework

are:

1. When predicting the equipment degradation evolution, the typical assumption of consider-

ing its future conditions of usage constant (e.g., [16; 17; 18; 19]) or behaving according to

some known exogenous stochastic process (e.g., [20; 21; 22]) cannot be applied to the O&M

management framework in which, instead, they are modi�ed by the operation decisions (e.g.,

setting the load of each compressor station to inject the proper amount of gas into the GTN).
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2. The degradation states of the GNT elements are not precisely known, as they are estimated

by PHM algorithms a�ected by errors. Neither are precisely known the behavior of the GTN

demand, the e�ects of the di�erent settings of the compressor stations on the degradation

evolution and the e�ects of the maintenance decisions on the operability of the network.

These issues have been addressed separately. For example, a framework based on Markov Decision

Processes (MDPs) is applied in [24] to a simple system, which shows the bene�t with respect to the

traditional scheduled maintenance of making decisions based on the predictions of both degradation

state and future load of the equipment. In regards to the uncertainty in the PHM estimations, there

are studies de�ning the metrics for its characterization (e.g., [25; 26]) and theoretical enhancements

for modeling (e.g., [27]) and decision making (e.g., [28; 29]).

In this work, we address the two issues together, to develop a novel approach to decision-making

in GTN equipped with PHM capabilities, in which the O&M management is framed as within

the Sequential Decision Problem (SDP) paradigm in the presence of uncertainties, and we adopt

the Partially Observable Markov Decision Processes (POMDPs) framework [23] for its solution.

This new way of approaching the comprehensive management of GTN O&M represents the main

contribution of this paper, which uses algorithms of the literature ([30; 31]) to solve POMDP.

POMDPs have already been used for managing CIs. For example, the POMDP framework is

proposed in [32] to solve the issue of power supply restoration in an electrical network. More

recently, POMDPs are used in [33] to estimate the Value of Information (VoI) in the management

of a civil CI, where the inspections are inaccurate. In [34], the authors rely on POMDPs to

investigate the �exibility of CIs like waste-water treatment plants and �ood protection systems

operating in an uncertain climate-changing environment. POMDPs are used in [35; 36] to optimize

maintenance and inspection policies on corroded structures. However, these works are concerned

with single components only and do not address the issue of managing the O&M of a GTN equipped

with PHM capabilities.

The remainder of the paper is as follows: Section 2 provides a description of the problem setting

and a detailed explanation of the POMDP framework; Section 3 presents the case study, which

concerns a GTN of literature; Section 4 analyzes and discusses the results, whereas Section 5

concludes the work.

2 Problem statement

Consider a network delivering natural gas to its users. In all generality, this can be represented by

a graph G(N,E), where N = {1, ..., ν} is the set of nodes and E = {(i, j) |i, j ∈ N, i 6= j } is the
set of edges (i.e., pipeline stretches) connecting the nodes. Edges are assigned the identi�cation
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number e = N + 1, ..., N + |E|.
The network nodes can be distinguished into [37; 38; 39]:

1. Source nodes N s ⊂ N , whose function is to inject the gas into the network, so that it can be

delivered to the users.

2. User nodes Nu ⊂ N , which demand the gas and, therefore, represent sinks.

3. Support unit nodes Nh ⊂ N ; these are the compressor stations guaranteeing the gas �ow

through the network. Since some support units consume a portion of the �owing gas, Nh ∩
Nu 6= ∅ and Nh ∩N s 6= ∅.

4. Dummy nodes Nd ⊂ N ; these identify the connections of pipe stretches with di�erent max-

imum capacities, which introduce discontinuities in the gas �ow.

For readibility, Figure 1 shows the Euler diagram of the di�erent types of nodes.

Figure 1: Euler diagram of the di�erent types of nodes

The elements of the network are a�ected by degradation processes leading to disruptions. To

reduce the computational burden while preserving the generality of the approach, we account for

the e�ects of degradation only on a subset H ⊂ N ∪ E of network items that are critical with

respect to the reliability metrics de�ned in [40]. This implies that elements in (N ∪ E)\H are

assumed to not degrade.

According to [41], the degradation processes are modeled as multi-state Markov processes [42; 43]:

the degradation of every network item i ∈ H evolves through states ζ i ∈ Zi = {1, ..., |Zi|} of

increasing degradation level, where ζ i = 1 refers to the As Good As New (AGAN) state of the
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item, whereas ζ i = |Zi| denotes its failure; | · | speci�es the cardinality of its set argument.

Given the criticality of the H items for the proper network operation, they are assumed to be

equipped with PHM systems for estimating their degradation states. The PHM systems, however,

are not perfect: the algorithms estimating the degradation states of the items i ∈ H based on

the monitoring signals could estimate the degradation states di�erent from the actual ones. We

assume that the PHM systems performance is quali�ed, i.e., the probability of the misclassi�cation

errors is known and represented by a confusion matrix [38; 44; 45].

Concerning the user nodes, the gas demand of user i ∈ Nu is indicated by di ∈ Di =
{
di1, ..., d

i
|Di|

}
and is assumed to change over time, according to a dynamics dependent on factors such as gas

selling price, import/export rate, population growth, environmental concerns, climate changes

[46; 47; 48]. In our framework, we model the uncertain evolution of gas demand over the months

as a discrete-time Markov process, which implies assuming that the future evolution of the demand

depends only on the present time value, and not on the past evolution. Although in many real-

life situations this assumption is not veri�ed, nonetheless modeling the gas demand as a Markov

chain could not necessarily imply a loss of generality, as non-Markov processes can be turned into

Markov processes through augmentation of the state space, i.e., by introducing additional variables

[34; 49; 50]. Obviously, this results in a more computational demanding model.

The loads of the source nodes N s need to be properly set to allow matching the users' requests,

while considering possible leakages throughout the GTN. In details, the OM can select the amount

of gas injected into the network F i ∈
{
F i

1, ..., F
i
Li

}
from source node i ∈ N s. Li denotes the supply

level at node i, such that:

F i
l−1 > F i

l , l = 2, . . ., Li (1)

Obviously, the amounts of gas inserted into the network cannot be arbitrarily set, as the continuity

equation must always be veri�ed: ∑
i∈Ns

F i =
∑
i∈Nu

di ≤ Fmax (2)

where Fmax is the maximum quantity of gas that can be injected into the network by the source

nodes N s. We use the Boykov-Kolmogorov algorithm to �nd the maximum �ow through the

network ([51]).

Besides setting the loads, the network manager has to take decisions on the maintenance actions to

be performed on degrading network itemsH, which are distinguished into preventive and corrective.

The former are performed to prevent failures, whereas the latter are carried out upon failure to

restore the system. For generality, we assume that in both cases the maintenance task is not always

capable of restoring the item to its As Good As New (AGAN) state (i.e., imperfect maintenance
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[52]). However, preventive maintenance tasks outperform the corrective tasks with respect to the

repair time: preventive actions o�er the possibility of properly arranging in advance the logistics

to carry out the operation, thus eliminating all the related issues such as the propagation of the

e�ects of the failure or the search for the failed component(s). This results in a faster intervention.

The objective of this work is to develop a novel approach for the e�ective management of GTNs

equipped with realistic PHM capabilities, which su�er from misclassi�cation errors in the monitored

equipment health states. To be e�ective, GTN management have to take into acccount that

operation decisions, which mainly depend on the GTN state and gas demand variations, must be

intertwined with maintenance decisions, considering their e�ects on the GTN degradation evolution

and operations. To do this, O&M management is framed within the SDP paradigm in the presence

of uncertainties, and the POMDPs framework [23; 30; 31] is used to �nd the optimal policy.

2.1 POMDP framework for GTN operation management

A POMDP is formally de�ned as the 7-tuple (s,A,T, R,Ω,b(0)), whose elements are described

below.

Generally, the state of the managed system at time t must encode all the relevant information to

make decisions about the actions to be taken. In our framework, the state space encodes both the

degradation levels of items H and the demand levels of users Nu. These variables are arranged in

vector s(t), whose k -th element is:

sk =

{
ζ i i = min {ι ∈ H : |{µ ∈ H : µ ≤ ι}| ≥ k} , k = 1, ..., |H|
di i = min {ι ∈ Nu : |{µ ∈ Nu : µ ≤ ι}| ≥ k − |H|} , k = |H|+ 1, ..., |H|+ |Nu|

(3)

Namely, the �rst |H| entries of s(t) represent the degradation levels of the PHM-equipped items

H, arranged in ascending identi�cation numbers. Then, the |Nu| demand levels are appended to

the �rst |H| entries, still organized in ascending node identi�cation number.

Then, vector s belongs to set S = ×i∈HZi ×i∈Nu Di. For convenience, we enumerate the vectors

in S in arbitrary order. Thus, the generic state vector is indicated by s, whereas the enumerated

vectors by sσ, σ = 1, ..., |S|.
To satisfy the user demands of gas, the OM selects on each item i ∈ N s ∪ H an action ai from

the corresponding set of actions Λi. In details, concerning nodes i ∈ N s ∩H, Λi={1, . . . , Li, Li +

1, Li + 2}, where the �rst Li elements of the set specify the output level F i of the node and can be

selected only if node i is not failed (i.e., ai≤Li if ζ i < |Zi|), whereas Li+1 and Li+2 denote the

execution of preventive and corrective maintenance actions, respectively. Obviously, ai can be set

to Li + 1 if ζ i < |Zi|, whereas ai = Li + 2 whenever ζ i = |Zi|.
For every network item (i.e., node or edge) H\N s, we set Li = 1, whereby the set of actions
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Λi consists of 3 elements: the �rst indicates that the gas �ows through the item, whereas the

remaining two refer to performing preventive and corrective maintenance tasks, respectively. In

general, the output level associated to both maintenance activities is null:

F i
Li+1 = F i

Li+2 = 0, ∀i ∈ H (4)

Edges E\H are fully reliable pipelines, with no related action.

Finally, also nodes N s\H are assumed to be fully reliable and, thus, they do not need maintenance.

The set of actions for every node i ∈ N s\H is Λi = {1, . . . , Li}, with each element indicating the

node's gas output level F i.

The concatenation of actions ai yields vector A ∈ A = ×i∈Ns∪HΛi, whose k-th element is:

Ak = ai, i = min {ι ∈ N s ∪H : |{µ ∈ N s ∪H : µ ≤ ι}| ≥ k} , k = 1, ..., |N s ∪H| (5)

When the network OM applies action A to the system in state s(t), this undergoes a Markov

transition to state s(t + 1), according to the transition probability function T : S × A × S →
[0, 1]:

T (s(t),A, s(t+ 1)) = Pr [s(t+ 1) |s(t),A ] (6)

The OM incurs into a reward R(s(t),A, s(t + 1)) when the system ends up in state s(t + 1) after

the execution of action A in state s(t). The reward function R : S × A × S → R indicates how

good the immediate e�ect of action A is (i.e., the transition between s(t) and s(t+ 1) for reaching

the �nal objective of delivering gas to the users). Thus, the reward function strictly depends on

the speci�c case study considered and it has to relate to the global behavior of the GTN.

As mentioned before, we assume that the degradation state of the condition-monitored items, H, is

not exactly known by the OM, who has to take actions based on the possibly incorrect estimations

provided by the PHM systems. The information on the k -th element of the state vector, sk, is

summarized by observation

ok ∈ Φi = {1, ...,
∣∣Φi
∣∣} i = min {ι ∈ H : |{µ ∈ H : µ ≤ ι}| ≥ k} , k = 1, ..., |H| (7)

With respect to the current demand of gas by users Nu, we assume that this is exactly known, as

the �owmeters installed in GTNs are generally very accurate [53]. Then, ok = sk ∈
{
di1, ..., d

i
|Di|

}
,

k = |H| + 1, ..., |H| + |Nu|. This way, the observation vector o(t) =
[
o1, ..., o|H|+|N

u|] belongs to
the cartesian product Ω = ×i∈HΦi ×i∈Nu Di. Similarly to S, the vectors in Ω are enumerated in

arbitrary order: oω, ω = 1, ..., |Ω|.
Based on the observation set Ω , we introduce the emission function O : Ω×A× S → [0, 1], which
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de�nes the probability of having observation o(t+1) ∈ Ω when the application of action A ∈ A
has led the system entering state s(t+ 1) ∈ S:

O(o(t+ 1),A, s(t+ 1)) = Pr [o(t+ 1)|s(t+ 1),A] (8)

We use the emission function to model the probability that the PHM system provides an incorrect

degradation state estimation, being in this particular case the observation at time t+1 independent

from the action taken at time t.

In the POMDP framework, the state of the system, s(t), cannot be unambiguously determined at

any time instant t. Therefore, the OM has to take actions based on his/her current belief of the

system state, which depends on the sequence of actions and subsequent observations retrieved up

to time t. Formally, the belief at time t is the probability distribution

b(t) = Pr [s(t)|o(t),A(t− 1),o(t− 1), ...,A(1),o(1),A(0)] (9)

whose σ-th element, bσ, reads:

bσ = Pr [s(t) = sσ|o(t),A(t− 1),o(t− 1), ...,A(1),o(1),A(0)] , σ = 1, ..., |S| (10)

To conclude the de�nition of the POMDP 7-tuple, we de�ne the initial belief, b(0), specifying the

knowledge of the OM about the initial state of the system.

Whenever the OM implements an action, the current belief b(t) must be updated to take into

account the new information retrieved from the system, i.e., the observation o(t+1). This process,

which is known as belief update, is based on the following application of Bayes' rule [30; 31]:

bσ(t+ 1) =
O (o(t+ 1),A, sσ(t+ 1))∑|S|

y=1 O (o(t+ 1),A, sy(t+ 1))
∑|S|

x=1 T (sx(t),A, sy(t+ 1)) bx(t)
·

|S|∑
m=1

T (sm(t),A, sσ(t+ 1)) bm(t), σ = 1, ..., |S| (11)

This formula allows the OM updating the probability distributions over the states of the system,

which must be associated to the optimal actions to be taken. Obviously, these do not depend on

the immediately generated reward (i.e., greedy actions); rather, they must consider the expected

future evolution of the system states, beliefs and the actions that will be taken correspondingly.

If we de�ne a policy π as a mapping of beliefs onto actions, i.e., A = π(b), then its performance

is indicated by the value function V π, de�ning the expected return gained when the initial belief

is b(0) and the adopted policy is π:

V π(b(0)) = Eπ

[∑
t≥0

γtr(b(t),π(b(t)))|b(0)

]
(12)

8



where Eπ [ · ] denotes the expectation operator given that policy π is being followed, γ is a discount

factor (0 ≤ γ < 1) [54] and the expected future rewards read:

r(b(t),π(b(t))) =

|S|∑
x=1

 |S|∑
y=1

R(sx(t),π(b(t)), sy(t+ 1)) · T (sx(t),π(b(t)), sy(t+ 1))

 · bx(t) (13)

The objective of this work is the identi�cation of the optimal policy π∗, which maximizes the value

function V π, starting from b(0). The corresponding value of V π∗
(b(0)) is indicated by V ∗.

2.2 POMDP solution

Generally speaking, in the POMDP framework the optimal policy π∗ is obtained through an

iterative procedure, which ends when some convergence criterion is met. To do this, we build

on the formulation developed in [30; 31]. Namely, we exploit the property that the optimal value

function V ∗ of a policy with an in�nite planning horizon can be approximated by a piecewise linear

and convex function [55], which is iteratively estimated. This allows partitioning the belief space

into several regions, which are associated to di�erent mapping functions of b into V ∗ [55].

In details, according to [30; 31], we can parametrize the value function at the n-h iteration, Vn,

by a set of vectors Ξn =
{
αn,1, ...,αn,|Ξn|

}
, such that each α-vector maximizes Vn in one of the

regions into which the belief space has been partitioned.

This representation allows us calculating the value of belief b at the n-th iteration as:

Vn(b) = max
αn,ξ∈Ξn

(b ·αn,ξ) (14)

where

b ·αn,ξ =

|S|∑
σ=1

bσα
n,ξ
σ (15)

is the standard inner product in the vector space, with αn,ξσ being the σ-th entry of vector αn,ξ.

Methods extending the value iteration algorithms usually adopted to solve Markov Decision Pro-

cesses (MDPs) have been proposed to calculate the optimal value function V ∗ and, thus, to �nd

the optimal policy (e.g., [56; 57]). These, however, are computationally infeasible for large do-

main POMDPs [31]. To circumvent this issue, Point-Based Methods (PBMs) have been proposed

[30; 66; 58; 59], which �nd approximate solutions of V ∗ in smaller computational times, at the cost

of losing some optimality.

PBMs manipulate the value function updating procedure to speed up the computation of set Ξ.

In fact, Eq. 14 can be re-written as follows [30; 31]:

Vn+1(b) = max
A∈A

b · P (s,A) + γ

|Ω|∑
ω=1

max
αn,ξ∈Ξn

(b · gξA,oω)

 (16)
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where gξA,oω is a vector whose σ-th entry reads:

gξA,oω(σ) =

|S|∑
m=1

O (oω(t+ 1)|sm(t+ 1),A) · T (sm(t+ 1)|sσ(t),A) · αn,ξm , σ = 1, ..., |S| (17)

and P(s,A) is a vector whose σ-th element, σ = 1, ..., |S|, is:

P(sσ,A) =

|S|∑
m=1

R(sσ(t),A, sm(t+ 1)) · T (sσ(t),A, sm(t+ 1)) (18)

We can now apply twice the identity max
αn,ξ∈Ξn

(b ·αn,ξ) = b · arg max
αn,ξ∈Ξn

(b ·αn,ξ) to Eq. (16) [30]; the

�rst application yields:

max
ξ=1,...,|Ξn|

(b · gξA,oω) = b · arg max
gξA,oω ,ξ=1,...,|Ξn|

(b · gξA,oω) (19)

so that from Eq 16:

Vn+1(b) = max
A∈A

b ·P(s,A) + γ

|Ω|∑
ω=1

b · arg max
gξA,oω ,ξ=1,..,|Ξn|

(b · gξA,oω)

 (20)

From the second application, we obtain:

Vn+1(b) = b·arg max
A∈A

b ·P(s,A) + γ

|Ω|∑
ω=1

b · arg max
gξA,oω ,ξ=1,..,|Ξn|

(b · gξA,oω)

 = b·arg max
A∈A

[b · gα
A] (21)

where:

gα
A = P(s,A) + γ

|Ω|∑
ω=1

arg max
gξA,oω ,ξ=1,..,|Ξn|

(b · gξA,oω) (22)

This way, the value function for belief b becomes:

Vn+1(b) = b · arg max
A∈A,α∈Ξn

(b · gα
A) (23)

By comparing Eq. (23) with Eq. (14), we notice that:

αn+1 = arg max
A∈A,α∈Ξn

(b · gα
A) (24)
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This last operation, called backup(b), allows computing the optimalα-vector and, thus, the optimal

action, for belief b. The full complexity of a point-based backup requires O(|A|×|Ω|× |Ξ|× |S|2 +

|A| × |Ω| × |S|) operations [31].
PBMs di�er from techniques that aim at �nding an exact solution for every belief point because

they act over a �nite set B of belief points. This way, the backup operation is performed for a �xed

number of times in every iteration, leading to a signi�cant reduction in the number of operations

performed with respect to the exact algorithms [31].

The main idea of PBMs is to focus on a set of belief points that can be reached starting from b(0)

and following an arbitrary policy. Beliefs belonging to this subset, which is much smaller than the

whole belief space, can be collected by applying the belief update procedure to the starting belief

b(0) several times. This implies that the de�nition of the belief set B is fundamental for the PBMs

to be e�ective, both in terms of accuracy and convergence speed. Moreover, the optimal policy

found by PBMs is conditional on the initial knowledge of b(0). If we change the intial belief into

b′(0), then also the subset of belief points reached during the simulation changes, and we get the

approximate value of this new belief point V (b′(0)).

In Appendix 1, we provide a brief description and the pseudocode of the PERSEUS algorithm [30],

which we have used to compute the solution to our problem. We refer to [31; 59; 60] for further

details on the procedures used to determine the belief set B.

3 Case Study

We apply the proposed methodological framework to the GTN presented in [61], which can be

modeled as a graph with 30 nodes and 34 edges (see Figure 2). With respect to the original

network, some modi�cations are introduced to avoid unnecessary computational burden (Figure

3). In particular, the user nodes are partitioned into 5 groups on the basis of their location in the

network and nodes in the same group are assumed to behave as a single merged node. This way,

the classi�cation of the nodes in their respective sets is as follows:

1. N s={2,18,22};

2. Nh={2,8,10,12,14,17,19};

3. Nu={16,17,18,20,21};

4. Nd={3,4,5,6,7,9,11,13,15}.
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Figure 2: Original GTN [61]

Figure 3: Modi�ed GTN

The nominal gas demand dinom of each user node i ∈ Nu is obtained by summing the nominal

gas demands of the nodes of the original network included in group i (Table 1). We also assume

that the source capacities reported in [61] represent the largest possible gas injection F i
nom into the
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network by sources i ∈ N s. The time horizon we are referring to is the CI lifetime and the reference

time unit is the month, although a di�erent time scale (e.g., year) might be used. This requires

converting the daily gas demands (i.e., Mm3d−1) considered in [61] into monthly gas demands

(i.e., Mm3mo−1) by multiplying their values by 30. The failure of a node is assumed to reduce to

0 the capacities of the connected pipe stretches.

Table 1: Nominal gas demands of user nodes

User

Node

Nominal gas demand, dinom
[Mm3mo−1]

Importance

wti

16 82.2 0.046

17 1094.7 0.616

18 105 0.059

20 135 0.076

21 360 0.203

3.1 State

We set H = {2,17}. Source node i=2 represents a Lique�ed Natural Gas (LNG) terminal ([61]). Its
pumping system is critical because it supplies the largest quantity of gas. User node i=17 represents

a compressor station ([61]), which is critical because its demand covers more than 50% of the GTN

total demand [61]. These two nodes are assumed to be equipped with PHM systems and their

degradation levels have been discretized into 3 states, Z2 = Z17 = {1, 2, 3}, with 1 indicating the

As Good As New condition and 3 the failure of the node. Notice that the degradation mechanisms

a�ecting the GTNs typically take some years to reach the failure states. This is coherent with the

assumption of considering the month as time unit.

The demand levels of nodes i=16, 18, 20 are set to Di = {0, dinom} due to their small gas request

(i.e., less than 15% of the total demand of the network): the null demand level indicates that gas is

not requested, whereas dinom denotes that the i-th node requires its nominal supply of gas. On the

other hand, the demand levels of user nodes i=17, 21 are set to Di = {0.95dinom, d
i
nom, 1.05dinom},

which refer to 95% of the total nominal gas demand, 100% of the total nominal gas demand and

105% of this value, respectively.

This way, the state s of the network is represented by a vector with |S| = 7 entries, the �rst two

denoting the degradation levels of nodes H and the remaining �ve indicating the gas demands of

the users (see Figure 3).
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3.2 Actions

To meet the gas request of the users, the OM must select for each node i ∈ H∪N s = {2, 17, 18, 22}
an action from the corresponding set Λi (see Figure 3). Speci�cally, we assume that for source

node i = 2, the OM can choose the output level among 3 di�erent values of gas supply. Thus,

Λ2 = {1, 2, 3, 4, 5}: the �rst action, a2 = 1, sets the output level of the source exactly to its nominal

value (i.e., F 2
1 = F 2

nom); the second action, a2, to 80% of its nominal value (i.e., F 2
2 = 0.8F 2

nom);

the third, a2 =, to 50% of its nominal value (i.e., F 2
3 = 0.5F 2

nom). The remaining two actions,

a2 = 4 and a2 = 5, indicate the implementation of preventive and corrective maintenance tasks,

respectively, with an associated null output level (i.e., F 2
4 = 0, F 2

5 = 0).

With respect to node i = 17 ∈ H\N s, the network OM can only decide whether to allow the

arriving gas �owing through the node, a17=1, or perform a preventive maintenance, a17=2. In

case the node is failed, OM is forced to make corrective maintenance, a17=3. Notice that this node

cannot receive any gas when it is undergoing maintenance. Finally, the two minor sources (nodes

i=18 and i=22) can be operated at two distinct levels (i.e., Λ18 = Λ22 = {1, 2}), which indicate

the source switch on and switch o�, respectively. The MATLABr function max�ow is used to

evaluate the gas supply to the user nodes Nu, for every state s(t+ 1) of the network reached upon

the execution of action A(t).

3.3 Transition Matrices

We assume that both the degradation processes a�ecting the nodes H and the demand levels of

users Nu do not in�uence each other, although the degradation processes a�ecting nodes i = 2

and i = 17 evolve depending on the actions implemented on the network elements. Thus, the

transition probability function reads:

T (s(t),A(t), s(t+ 1)) =
∏

k=1,...,|H|+|Nu|

Pr
[
sk(t+ 1)

∣∣sk(t),A(t)
]

(25)

In details, the evolution of the degradation mechanism on source node i = 2 is faster when it

supplies larger amounts of gas. Therefore, the smallest probability of failure of the node pertains

to action a2 = 3, whereas the largest probability to action a2 = 1. On the other hand, maintenance

activities are taken to restore the node to healthier conditions. Then, we formalize the transition

probability function for the actions available at node i = 2 through |Z2| × |Z2| = 3 × 3 matrices

Ti=2
a2 , whose (v,w) entry denotes the probability that the state of node i = 2 switches from v to w

according to action a2 ∈ Λ2. The 3× 3 matrices corresponding to the actions in Λ2 can be found

in Appendix 2. Notice that we have arbitrarily set these transition probability values, as they are
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not de�ned in [61].

Furthermore, we assume that the degradation of node i=17 depends only on the action taken on

the node itself and on those performed on the sources. Evidently, this is a simplifying assumption,

as the resulting degradation model does not encode all the functional dependencies (e.g., gas �ows,

demand level, current degradation state and so forth). However, the development of a re�ned

degradation model of the network is beyond the purpose of this paper. We characterize the evolu-

tion of the degradation mechanism on node i=17 with 6 matrices, corresponding to the di�erent

possible network con�gurations generated by the combinations of actions taken. Namely, the �rst

transition matrix Ti=17
1 refers to the situation when source i = 2 operates at 80% or 100% of its

nominal output level (a2 = 1 or a2 = 2) and, thus, it is able to satisfy the demand of user i=17, if

a17 = 1. A di�erent transition matrix Ti=17
2 is assigned to node i = 17 when node i = 2 supplies

50% of its nominal output level and node i = 17 is demanding gas (a2 = 3 and a17 = 1): in this

con�guration, the amount of gas provided by node i=2 is not su�cient to fully satisfy the request

of the user node and, thus, a supply from the minor source nodes i=18 and i=22 is required. If

node i=2 is not injecting gas, node i=17 relies on the supply of gas provided by the two minor

sources. Thus, we provide a di�erent transition matrix Ti=17
3 describing the degradation evolution

for these action settings (a18 = 1, a22 = 1 and a17 = 11; a18 = 1, a22 = 2 and a17 = 1; a18 = 2,

a22 = 1 and a17 = 1; a18 = 2, a22 = 2 and a17 = 1). Finally, when no gas �ows in the network, the

node does not degrade and the transition probability function is described by an identity matrix

Ti=17
4 = I.

Maintenance tasks on node i=17 are modeled by two transition matrices, Ti=17
5 and Ti=17

6 , related

to preventive and corrective actions, respectively. These are reported in Appendix 2.

The transition matrices relative to the gas demand variability of the users can be found in Ap-

pendix 2.

Notice that the entries of the transition matrices can be estimated from the available degradation

data through known statistical techniques (e.g., [62; 63]). In general, this may require the avail-

ability of large datasets, which can be di�cult to �nd in practice. In these cases, expert judgement

and physics-based modeling approaches can be used to relate the actions taken to the degradation

behaviors over time of the network items.

3.4 Rewards

To specify the reward function R, we consider the importance of user node i ∈ Nu towards the

global income, which is quanti�ed by its weight:

wti =
di∑
i∈Nu di

(26)

15



The larger the weight of the user node, the larger its importance (Table 1). Then, the income/loss

obtained by supplying a quantity of gas sui to node i ∈ Nu is:

{
ri = c · sui if sui = di

ri = −c · (di − sui)− p · wti if sui < di
(27)

where we assume a price of gas c = 0.2Me/Mm3 and a penalty p = 9Meis incurred by the gas

operator for not delivering gas to the users, which corresponds to collecting a penalty of 0.3Me

for 30 days.

Notice that the reward function can encode the costs related to the fuel consumption and leakages

throughout the network and a more sophisticated algorithm can be embedded into the model to

optimize the network model for minimizing the cost. For simplicity, these have not been explicitly

considered.

Consequently, the reward gathered at the network level is de�ned as:

r =
∑
i∈Nu

ri + CPM · (#PM actions) + CCM · (#CM actions) (28)

where CPM = −2.5Me and CCM − 5Me are the cost of preventive and corrective maintenance

actions, respectively. The values for c, p, CPM and CCM have been arbitrarily set by the authors.

The discount factor used to weigh the rewards obtained in the future is γ = 0.9.

Notice that the meaning of γ relates to decision maker objectives rather than to economic consid-

erations (e.g., [54]): the smaller the discount factor is, the more greedy is the solution sought. The

resulting state-action values of the optimal policy depend on this perspective.

3.5 Observations

We assume that the PHM systems on nodes H provide estimations of the degradation states

independently on each other, which is typical of the PHM algorithms not working on �eet data.

Yet, we assume that for every action Ak we know the probability that the OM observes ok = w

when the k -th element of the state vector enters state sk = v, k ≤ |H|, which is not in�uenced

by the observations on the other nodes. This is equivalent to assuming to have a quali�ed PHM

system, with known and validated classi�cation performances. For every Ak, these probabilities

can be arranged in a |Zi| × |Φi| matrix Ok, whose (v, w) entry reads:

Ok(v, w;Ak) = Pr
[
ok = w|sk = v, Ak

]
(29)

For k > |H|, we can de�ne Ok as |Di|×|Di| identity matrices, meaning that there is no uncertainty
on the measured demand levels of the users Nu, whichever vector A is.
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Based on these assumptions, the emission function for the network reads:

O(o(t+ 1),A(t), s(t+ 1)) =
∏

k=1,...,|H|

Pr
[
ok(t+ 1)

∣∣sk(t+ 1), Ak(t)
]

(30)

The probabilities that the PHM system misclassi�es the degradation states of nodes H, nodes i=2

and i=17, are summarized by the observations matrices Oi=2 and Oi=17. In our work, Φi≡Zi,

as we assume that PHM systems classify the degradation states of the nodes in one out of the

three possible alternatives. This entails that the size of the observation matrices Oi=2 and Oi=17

is |Zi| × |Φi| = |Zi| × |Zi| = 3 × 3 (see Appendix 2). We also assume that uncertainties a�ect

the outcome of the PHM devices only when the monitored nodes are in an operational state (i.e.,

ζ2 = ζ17 = 1 or ζ2 = ζ17 = 2) and that the state estimation is provided by a classi�cation algorithm

independently from the implemented action. Yet, we assume that the network OM knows exactly

when the nodes have reached a failed state [27].

3.6 Initial state

The OM exactly knows the starting state of source node i = 2 and user node i = 17, together with

the demands of the users. In particular, we assume that both nodes i = 2, 17 are in the AGAN

state (i.e., ζ2 = ζ17 = 1) and that the demand of each user node i ∈ Nu is equal to dinom. This

way, we de�ne the initial state of the system, b(0).

In this framework, our purpose is to �nd the optimal management policy, which meets the gas

demands of the network users at the minimum supply losses.

With respect to the computational e�ort needed to complete a point-based backup operation

(see Section 2.2), we observe that |A| = 60, |S| = |Ω| = 648. Assuming an average size of the

set of α-vectors equal to |Ξ| = 150, the complexity of the point-based backup requires O(2.44 ·
1012) operations, which can be handled by an average personal computer. Notice, however, that

more complex problems would require more sophisticated machines or di�erent algorithms. To

appreciate the practical consequences of the de�nition of the POMDP 7-tuple on the computational

burden, we report in Table 2 some examples of di�erent possible settings. From this, it can be easily

seen that considering more complex case studies can lead to increments of orders of magnitude in

the computational time.

Finally, Table 3 summarizes the pieces of information required to develop the POMDP setting and

the corresponding sources to obtain those estimates from a real system.
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Di�erence with s(t) Number of operations

|Z2| or |Z17| or |D17| or |D21| = 4 O(5.80 · 1012)

|D16| or |D18| or |D20| = 3 O(8.26 · 1012)

|Λ2| = 6 O(2.93 · 1012)

|Λ17| = 4 O(3.26 · 1012)

|Λ18| or|Λ22| = 3 O(3.67 · 1012)

|D21| = 4 and |D16| = 3 O(1.96 · 1013)

|D21| = 4 and |D16| = 3 and |Λ18| = 3 O(2.93 · 1013)

Table 2: Number of operations for backup in di�erent settings

Variable Source

H Expert judgment

|H| and |Zi|, i ∈ H Trade o�: node relevance vs computational times

Di, i ∈ Nu Past History

|Di|, i ∈ Nu Trade o�: node relevance vs computational times

|Λi|, i ∈ H ∪N s Trade o�: node relevance vs computational times

T (s(t),A, s(t+ 1)) Available datasets, expert judgment and physics-based models

r GTN contracts obligations

O(o(t+ 1),A, s(t+ 1)) PHM validated classi�cation performance

b(0) DM initial belief

Table 3: Information to build the POMDP setting

4 Results and Comments

To assess the enhancement of the proposed framework, we need to de�ne a reference O&M policy,

which the strategy found by the POMDP can be compared to. For this, we consider the case in

which no PHM systems are installed in the GTN, which is obtained by reducing the number of

states of both nodes i = 2 and i = 17 from 3 to 2, the last two states being lumped together.

The pro�tability of the GTN operation with no PHM is evaluated by solving a MDP, in which the

optimal policy is found through the value iteration method [54], with tolerance for convergence set

to 10−5 [54]. The solution found is that maximizing the pro�t by properly setting the source node

gas levels while applying corrective maintenance to the degrading nodes.

The same MDP setting is then applied to �nd the optimal policy obtained in case of perfect PHM,

which is then compared with those obtained from the POMDP considering increasing probabilities

of degradation state misclassi�cation by the PHM systems. This allows isolating the e�ect of the
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uncertainty due to PHM system underperformance on the pro�tability of the GTN operations. In

particular, the following settings are considered:

(a) the accuracy of the PHM systems is 0.99;

(b) the accuracy of the PHM systems is 0.95;

(c) the accuracy of the PHM systems is 0.9.

Table 4 reports the expected discounted returns of the policies obtained for the considered PHM

system con�gurations, starting from state s0 or b(0), in case of MDP or POMDP settings, respec-

tively.

Table 4: Expected discounted returns (in Me) obtained using di�erent con�gurations of PHMs.

PHM accuracy 100% 99% (setting a) 95% (setting b) 90% (setting c) No PHM

Expected Dis-

counted Return

877 874 872 869 795

As expected, Table 4 shows that when the knowledge of the degradation states of the nodes is

perfect, the network OM reaches the largest possible income from the infrastructure, being always

able to act optimally, thus obtaining the largest possible income from the infrastructure. When

the PHM system accuracy is reduced, instead, the expected discounted return slightly decreases.

Furthermore, it can be seen that the expected return gained when critical nodes i=2 and i=17 are

not equipped with a PHM is remarkably smaller than in the setting where the nodes are equipped

with PHM systems, even if with reduced accuracy.

Notice that the di�erences of the the expected discounted returns of the MDP policy (�rst column

in Table 4) and those of the POMDP settings (following columns in Table 4) provide the Values

of Perfect Information (VoPI). VoPI represents the possible increase of the expected value of the

POMDP setting if the maintenance strategy were decided based on perfect information about the

systems health states [64]. For example, the VoPI for POMDP setting c is 877-869= 8Me. This

quantity is the maximum value that the OM is willing to pay, to provide perfect PHM systems to

the critical nodes.

To further investigate the results, we select from the set B built by the PERSEUS algorithm

the subset of beliefs corresponding to the states s = [ζ2, ζ17, d16
nom, d

17
nom, d

18
nom, d

20
nom, d

21
nom] (i.e., the

state in which the gas demand of each user node i ∈ U is equal to dinom). Figures 4, 5 and 6

show in a parallel coordinates [65] the optimal action corresponding to these states, in which, for

illustration, we lumped the preventive and corrective maintenance actions into one action, indicated

by M. Parallel coordinates enable representing high-dimensional data by drawing vertical, parallel
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Figure 4: Optimal action as a function of the belief of the states of nodes i=2 and i=17 (1=AGAN;

2=partially degraded; 3=failed), when the accuracy of the PHM is 0.99 (setting a) and the demand

level is nominal for all user nodes. Top refers to the actions with a2 = 1 and a17 = 1 (the output

of the source node is set to the nominal value and the user node lets the gas �ow); middle to the

actions with: a2 = 3 and a17 = M (output of the source node set to 50% of the nominal value and

user node under maintenance); bottom to the actions with: maintenance on both critical nodes.

Right: MDP policy for the selected demand level

and equidistant lines (axes) in number equal to the dimension of the state space. Then, a point in

the state space is identi�ed by a polygonal line whose vertices, representing the coordinates of the

point, lie on the parallel axes. In our case, the demand level is �xed; then, the parallel coordinates

require 9 axes, each corresponding to one out of the combination of the degradation states of the

critical nodes. Notice that the number of beliefs contained in the chosen subset is similar for the

three considered cases, although it might look di�erent due to the superposition of the lines.

On the left of each Figure, we show the optimal action provided by the PERSEUS algorithm,

whereas on the right we show the corresponding optimal actions provided by value-state iteration

algorithm in case of perfect PHM systems (i.e., MDP). Notice that the assumption that the un-

known degradation states of the nodes are those characterized by the maximum belief lead the

optimal actions provided by the MDP and the three POMDPs settings to always coincide, except

in few cases in which the states of the two critical nodes are ζ2 = 2 (partially degraded) and ζ17 = 3
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Figure 5: Optimal action as a function of the belief of the states of nodes i=2 and i=17 (1=AGAN;

2=partially degraded; 3=failed) when the accuracy of the PHM is 0.95 (setting b) and the demand

level is nominal for all user nodes. Top refers to the actions with: a2 = 1 and a17 = 1 (the output

of the source node is set to the nominal value and the user node lets the gas �ow); middle to the

actions with: a2 = 3 and a17 = M (output of the source node set to 50% of the nominal value and

user node under maintenance); bottom to the actions with: maintenance on both critical nodes.

Right: MDP policy for the selected demand level
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Figure 6: Optimal action as a function of the belief of the states of nodes i=2 and i=17 (1=AGAN;

2= partially degraded; 3= failed) when the accuracy of the PHM is 0.9 (setting c) and the demand

level is nominal for all user nodes. Top refers to the actions with: a2 = 1 and a17 = 1 (the output

of the source node is set to the nominal value and the user node lets the gas �ow); middle to the

actions with: a2 = 3 and a17 = M (output of the source node set to 50% of the nominal value and

user node under maintenance); bottom to the actions with: maintenance on both critical nodes.

Right: MDP policy for the selected demand level
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(failed). In these cases, the optimal action provided by the MDP is to perform maintenance on both

nodes (Figures 5, 6 and 7 right), whereas the POMDP settings provide output load = 0.5F i
nom to

node i=2 and maintenance to node i=17 in a restricted set of beliefs (middle left graphs of Figures

5, 6 and 7). These states are characterized by the presence of some uncertainty on the degradation

state of node i=2 (beliefs smaller than 0.9). A justi�cation for this result can be found in the fact

that the losses deriving from the impossibility of supplying gas when maintenance is implemented

on node i=2 are expected to be larger than the bene�ts obtained by running the node in order to

leverage on the small chances of the node being in the AGAN condition. In a similar way, we can

apply this cost-bene�t analysis to explain the di�erent optimal actions provided by the MDP and

the three POMDPs for the states ζ2 = ζ17 = 2 (both nodes are partially degraded).

The good match between the actions found in the MDP and POMDP settings justi�es the simi-

larities in the results of the Monte Carlo simulations: despite the uncertainties a�ecting the PHM

systems, the OM is able to obtain an expected return that is close to that obtained with a perfect

PHM.

The expected return largely depends on two quantities: the average amount of gas successfully

supplied to the users of the network, Gs, and the quantity of required gas that remains undelivered

Gu. These can be estimated through Monte Carlo simulation.

Consider the discounted economic value of the amount of gas successfully delivered to the GTN

users, for the di�erent settings. The di�erences of this value in case of perfect PHM, IPHMGs
, and

those of the other settings, IaGs , I
b
Gs
, IcGs and I

NoPHM
Gs

, can be summed over the time horizon. The

cumulative di�erences are reported in dot-dashed lines in the subplots of Figure 7. For example,

in case of no PHM Figure 7, top-left shows:

t∑
τ=1

(
IPHMGs (τ)− InoPHMGs (τ)

)
t = 1, ...[months] (31)

Similarly, the di�erences in the cumulative discounted losses due to the amount of gas that remains

undelivered are reported in Figure 7 in dashed line. These di�erences are larger than 0 when the

perfect PHM outperforms the other settings in saving money losses.

In details, when the GTN is not equipped with PHM systems, the loss is mainly due to the fact

that a smaller amount of gas is successfully supplied to the users (thus representing a decrease in

the gain), which in turn leads also to the payment of signi�cant penalties. Notice that this subplot

has a di�erent scale on the ordinate axis, due to the di�erent order of magnitude of the losses, and

that the sum of the cumulative di�erences in supply (33Me) and undelivered amount (47Me)

almost equals the di�erence in the values of the initial state in Table 4 for the two considered MDP

settings (877− 795 = 83Me). This con�rms that these two parameters almost entirely justify the

di�erences among the expected returns of the di�erent PHM settings.
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Figure 7: Additional cumulative gain obtained with perfect knowledge of the degradation states.

Comparison with: no PHM(top left); PHM accuracy: 0.99(top right); PHM accuracy: 0.95(bottom

left); PHM accuracy: 0.9(bottom right)

Concerning accuracies 0.99 and 0.95, we can see that the OM is able to successfully satisfy the re-

quests of the users almost in the same measure as when the degradation states are perfectly known.

Yet, the OM incurs into losses because the amount of undelivered gas is larger. Finally, when the

accuracy is set to 0.9, the losses are mostly due to the di�erences in the undelivered amount of

gas, although di�erences in the successful supply of gas provide an important contribution.

Furthermore, we notice that when the critical nodes are equipped with a PHM system with accu-

racy smaller than 1, the OM is able to gather an income larger than that in the case of a perfect

PHM system at the beginning of the operation of the GTN: in the �rst 2-3 months, the di�erence

in the cumulated gain is negative; nonetheless, perfect PHM systems enable a better management

strategy, as in the following time instants they yield a larger discouned expected return (i.e., the

cumulative di�erences of both supply and undeliverable amounts become positive). This means

that the optimal policy yields the largest return on the long run, thus taking into account the

future e�ects of present actions. The e�ect of the classi�cation errors in imperfect PHMs is to

lead the OM to act so as to maximize the immediate return (i.e., greedy actions), which prevents

achieving future gains.

24



Finally, with respect to the computational times, to �nd the MDP optimal policies, an 8GB RAM

machine running an Intel Core i-7 processor of 2.20 GHz took:

1. 82 seconds in case no PHM system is installed in the GTN (setting 1).

2. 225 seconds in both cases in which only one PHM system is used (settings 2 and 3).

3. 511 seconds in case both nodes are equipped with perfect PHM systems (setting 4).

The PBM PERSEUS algorithm [30] is run with a set B containing 105 reachable beliefs, with a

tolerance for convergence ε = 10−5. The time required to �nd the optimal policy is:

1. Almost 24 hours in case of PHM accuracy equal to 0.99.

2. Almost 36 hours in case of PHM accuracy equal to 0.95.

3. Almost 48 hours in case of PHM accuracy equal to 0.9.

Due to the large computational times, no sensitivity analysis has been performed on the algorithm

and model parameters.

5 Conclusion

The management of the operations of GTNs is a complex task due to the many and diverse as-

pects it involves. On the one hand, the necessity of satisfying the demand of the users requires the

proper setting of the load on the compressor stations to not incur into losses; on the other hand, the

need of preserving the health conditions of the network elements drives the management decisions

towards the implementation of maintenance activities, which can reduce gas supply. Management

strategies are a�ected also by the errors in the PHM systems used to track the states of the network

elements: an incorrect estimation of the GTN element degradation state may lead the OM to take

unpro�table and unsafe decisions, with potential major consequences (e.g., reducing the amount

of delivered gas).

In this work, we relied on the POMDP framework to provide a tool aimed at supporting the de-

cision making for the operation of a GTN. The framework is such to enable the comprehensive

management of the GTN by taking into account the diverse aspects that are involved in the selec-

tion of a strategy, i.e., the uncertain estimations of the degradation states of the critical network

elements, the variability of the gas demand and the e�ects of the maintenance tasks.

The application to a realistic GTN proved the capability of the framework. Furthermore, the

method provides the OM with a solution, which can be easily analyzed to evaluate the factors

most a�ecting GTN. Finally, the modeling approach has allowed estimating the VoPI of PHM sys-
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tems with di�erent accuracy levels, which is a useful support to make decisions about investments

in PHM.

Some criticalities emerged from this study. Namely, the computational times are long when the

state space is large. The consequences are that sensitivity analyses cannot be performed in rea-

sonable time and that a compromise solution needs to be found between the level of detail of the

model and the computational burden. Future research work will focus on other methods for belief

function approximation, to investigate whether and to which extent this issue can be overcome.

Moreover, one of the underlying assumptions of the work is that both the equipment degrada-

tion process and the accuracy of PHM do not depend on the amount of gas circulating through

the network (see Appendix 2). Future research work will focus on overcoming this limitation,

which entails solving a signi�cantly more complex optimization problem where the algorithm cal-

culating the maximum �ow through the network has to encode the uncertainty on the equipment

state.
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6 Appendix 1

The �rst step in PERSEUS builds the belief set B through random exploration: several trajec-

tories through the belief space are generated by randomly sampling an action and an associated

observation at each time step, so that they can be used for the belief update procedure. Once the

belief set B is built, it remains �xed throughout the execution of the algorithm.

The value functionV (0) is initialized to a single vector with all components equal to 1
1−γ min

s,A
ρ(s, A),

which corresponds to collecting the minimal possible reward in every step. This way, we are en-

sured that the value function is initialized to a lower bound that can always be improved [9].

After this, PERSEUS implements the backup procedure as follows:

1. Set Ξn+1 = ∅, i.e., initialize the set of non-improved (by the backup operation) belief points

B̃ to B.

2. Sample a random belief point uniformly from B̃ and compute αn+1=backup(b).

(a) If b ·αn+1 ≥ Vn(b), add αn+1 to Ξn+1.

(b) Otherwise, add α′ = arg max
Ξn

(b ·αn).

3. Remove from B̃ all points whose value is improved by the newly calculated α-vector: B̃ =

{b ∈ B : Vn+1(b) < Vn(b)}

4. If B̃ = ∅, stop, else go to 2.

This backup stages are repeated until a convergence criterion is met; in our work, we stopped the

iterations when the relative di�erence between the value functions estimated on all the belief set

B between two consecutive iterations is below a tolerance ε:∑
b∈B Vn+1(b)−

∑
b∈B Vn(b)∑

b∈B Vn(b)
< ε
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7 Appendix 2

Here we report the transition and observation matrices that have been used for the calculations

in the case study. Notice that a dash ('-') is used to indicate that the associated action is not

available when the state of the node is the selected one.

1. Transition matrices for node 2 with no PHM:

Ti=2
1 =

[
0.7953 0.2047

− −

]
Ti=2

2 =

[
0.8442 0.1558

− −

]

Ti=2
3 =

[
0.8926 0.1074

− −

]
Ti=2

4 =

[
1 0

0.5988 0.4012

]
2. Transition matrices for node 17 with no PHM:

Ti=17
1 =

[
0.8504 0.1496

− −

]
Ti=17

2 =

[
0.9248 0.0752

− −

]

Ti=17
3 =

[
0.9688 0.0312

− −

]
Ti=17

4 =

[
1 0

0.6990 0.3010

]
3. Transition matrices for node 2 with PHM:

Ti=2
1 =

 0.55 0.3 0.15

0 0.75 0.25

− − −

 Ti=2
2 =

 0.65 0.25 0.1

0 0.8 0.2

− − −

 Ti=2
3 =

 0.75 0.2 0.05

0 0.85 0.15

− − −


Ti=2

4 =

 1 0 0

0.9 0.1 0

− − −

 Ti=2
5 =

 − − −
− − −
0.4 0.2 0.4


4. Transition matrices for node 17 with PHM:

Ti=17
1 =

 0.8 0.1 0.1

0 0.7 0.3

− − −

 Ti=17
2 =

 0.9 0.05 0.05

0 0.85 0.15

− − −


Ti=17

3 =

 0.95 0.03 0.02

0 0.95 0.05

− − −

 Ti=17
5 =

 1 0 0

0.8 0.2 0

− − −


Ti=17

6 =

 − − −
− − −
0.4 0.3 0.3


5. Transition matrix relative to the gas demand variability of users with 2 levels of gas demand:

T =

[
0.1 0.9

0.1 0.9

]
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6. Transition matrix relative to the gas demand variability of users with 2 levels of gas demand:

T =

 0 0.75 0.25

0.1 0.8 0.1

0.05 0.2 0.75

]
7. Observation matrices for both node 2 and node 17 with PHM with accuracy 0.99:

Oi=2 = Oi=17 =

 0.99 0.01 0

0.01 0.99 0

0 0 1


8. Observation matrices for both node 2 and node 17 with PHM with accuracy 0.95:

Oi=2 = Oi=17 =

 0.95 0.05 0

0.05 0.95 0

0 0 1


9. Observation matrices for both node 2 and node 17 with PHM with accuracy 0.9:

Oi=2 = Oi=17 =

 0.9 0.1 0

0.1 0.9 0

0 0 1


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