
 

Abstract: 

We present a method based on heterogeneous ensemble learning for the prediction of the Remaining 

Useful Life (RUL) of cutting tools (knives) used in the packaging industry. Ensemble diversity is 

achieved by training multiple prognostic models using different learning algorithms. The 

combination of the outcomes of the models in the ensemble is based on a weighted averaging strategy, 

which assigns weights proportional to the individual model performances on patterns of a validation 

set. The proposed heterogeneous ensemble has been applied to real condition monitoring knife data. 

It has provided more accurate RUL predictions compared to those of each individual base model. 

 

1. INTRODUCTION 

As the digital, physical and human worlds continue to integrate, the 4th industrial revolution, the 

internet of things and big data, the industrial internet, are changing the way we design, manufacture, 

deliver products and services. In this fast-pace changing environment, the attributes related to the 

reliability of components and systems continue to play a fundamental role for industry. On the other 

hand, the advancements in knowledge, methods and techniques, the increase in information sharing 

and data availability, offer new opportunities of analysis and assessment for reliability engineering. 

Based on this increased knowledge, information and data available, we can improve our reliability 

prediction capability. Particularly, the increased availability of data coming from monitoring the 

relevant components and systems parameters and the grown ability of treating these data by intelligent 

algorithms capable of mining out information relevant to the assessment and prediction of their state, 
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has open wide the doors for Prognostics and Health Management (PHM) and predictive maintenance 

in many industrial sectors, for improved operation and maintenance (Zio, 2016). Approaches for RUL 

estimation can be generally categorized into model-based and data-driven (Baraldi et al., 2015a). 

Model-based approaches use physics-based models to describe the degradation behavior of the 

equipment (Baraldi et al., 2015a). On the other side, data-driven methods are of interest when an 

explicit model of the degradation process is not available, as they rely on the availability of field data 

collected during the operation of one or more similar components. Among data-driven methods one 

can distinguish between (𝑖) degradation-based approaches, modeling the future equipment 

degradation evolution and (𝑖𝑖) direct RUL prediction approaches, directly predicting the RUL. 

Degradation-based approaches are based on statistical models that learn the equipment 

degradation time evolution from time series of the observed degradation (Baraldi et al., 2017). The 

predicted degradation state is, then, compared with a failure criterion, such as the value of degradation 

beyond which the equipment fails performing its function (failure threshold). Examples of modeling 

techniques used in degradation-based approaches are Auto-Regressive models (Gorjian et al., 2009), 

Relevance Vector Machines (Di Maio et al., 2012) and Semi-Markov Models (Cannarile et al., 2017a) 

(Cannarile et al., 2018). 

 Direct RUL predictions approaches, instead, typically resort to machine learning techniques that 

directly map the relation between the observable parameters and the equipment RUL, without the 

need of predicting the equipment degradation state evolution towards a failure threshold 

(Schwabacher et al., 2007). Techniques used in direct RUL prediction approaches are, for example, 

Artifical Neural Networks (Wang & Vachtsenavos, 2001), Extreme Learning Machines (ELM) (Yang 

et al., 2017), Gaussian Processes (GP) (Baraldi et al., 2015b), etc.  

When few run-to-failure degradation trajectories are available, direct RUL approaches may 

overfit, i.e., these algorithms customize themselves too much to learn the relationship between the 

observable parameters and the corresponding RUL in the training set. Therefore, these methods tend 

to lose their generalization power, which leads to poor performance on new data. To overcome this, 

ensemble approaches, based on the aggregation of multiple model outcomes, have been introduced 

(Baraldi et al., 2013a). The basic idea is that the diverse models in the ensemble complement each 

other by leveraging their strengths and overcoming their drawbacks.  

Thus, the combination of the outcomes of the individual models in the ensemble improves the 

accuracy of the predictions compared to the performance of a single model (Brown et al., 2005) 

(Baraldi et al., 2013a). Different methods, such as ANN (Baraldi et al., 2013b), Support Vector 

Machine (SVM) (Liu et al., 2006) and kernel learning (Liu et al., 2015), have been used with success 

to build the individual models. For example, an ensemble of feedforward Artificial Neural Networks 



(ANN) has been embedded into a Particle Filter (PF) for the prediction of crack length evolution 

(Baraldi et al., 2013b) and an ensemble of data-driven regression models has been exploited for the 

RUL prediction of lithium-ion batteries (Xing et al., 2013). In (Rigamonti et al., 2017) a local 

ensemble of Echo State Networks (ESN) has been proposed to improve the RUL prediction accuracy 

of turbofan engines. 

The objective of this work is to predict the RUL of knives installed on Tetra Pak® A3/Flex filling 

machines used to cut package material. The prognostic task is complicated by the fact that few run-

to-failure degradation trajectories are available, and a failure threshold is not available. To cope with 

these issues, this work proposes an ensemble formed by multiple data-driven direct RUL prediction 

models, capable of aggregating the RUL predictions for good performance throughout the entire 

degradation trajectory of a knife. Ensemble diversity is achieved by heterogeneous ensemble 

generation, i.e., by training the models using different prognostics algorithms. Aggregation is 

obtained by averaging the output of the individual base models with weights proportional to the 

inverse of their Empirical Generalization Error (EGE) on retrieved patterns in a validation set. The 

application of the proposed heterogeneous ensemble method to real condition monitoring knife data 

has shown to provide more accurate RUL prediction compared to that of each individual base learner 

in the ensemble.  

The paper is organized as follows: in Section 2, the objectives of this work and the assumptions 

are discussed; in Section 3, ensemble learning main concepts for data-driven direct RUL prediction 

are illustrated; in Section 4, performance metrics to compare different prognostic models are 

discussed. The application of the methodology to Tetra Pak® A3/Flex filling data is described in 

Section 5, whereas Section 6 draws the work conclusions. 

2. ASSUMPTIONS AND OBJECTIVES 

 

We assume to have available run-to-failure degradation trajectories of 𝑁 pieces of equipment 

similar to the one currently monitored (test equipment). Let  𝒙𝑖(𝜏𝑖) ∈ ℝ𝑚, 𝑖 = 1, . . , 𝑁;  𝜏 = 1, … , 𝑛𝑖 

be the vector of  𝑚 features extracted from signal measurements performed at time 𝜏𝑖 on the 𝑖𝑡ℎ 

equipment, with 𝑛𝑖 indicating the total number of data acquisitions performed on the 𝑖𝑡ℎ equipment 

before its failure. The ground truth RUL of the 𝑖𝑡ℎ piece pf equipment at time 𝜏𝑖 will be referred to 

as 𝑦𝑖(𝜏𝑖), 𝑖 = 1, … , 𝑁; 𝜏𝑖 = 1, … , 𝑛𝑖.  We consider a case in which the failure thresholds for the 

extracted features are not known. In this setting, fault prognostics is framed as a regression problem: 

given the historical dataset 𝑈 formed by 𝑁 realizations (degradation trajectories) {𝒙𝑖(𝜏𝑖), 𝑦𝑖(𝜏𝑖), 𝜏𝑖 =

1, … , 𝑛𝑖}, 𝑖 = 1, … , 𝑁, of a stochastic process (𝑿(𝜏), 𝑌(𝜏)) ∈ ℝ𝑚𝑥 (0, +∞), our task is to find a 



function 𝑓: ℝ𝑚 → (0, +∞) such that it associates to a test pattern 𝑥𝑡𝑒𝑠𝑡(𝜏𝑡𝑒𝑠𝑡) ∈ ℝ𝑚, the 

corresponding output 𝑦𝑡𝑒𝑠𝑡(𝜏𝑡𝑒𝑠𝑡). In what follows, we refer to 𝑓 as base model or base learner (Zhou, 

2012). 

3. ENSEMBLE LEARNING FOR FAULT PROGNOSTICS 

 

In contrast to ordinary learning approaches which try to construct one base learner from training 

data, ensemble methods try to construct a set of learners 𝑓1̃, … , 𝑓𝐻̃  and combine them to obtain an 

ensemble learner  𝑓𝑒𝑛𝑠̃. In this work, we consider combination of base learners based on weighted 

averaging (Zhou, 2012), i.e., the combined output  𝑓𝑒𝑛𝑠̃ is obtained by averaging the output of the 

individual learners with different weights 𝛼ℎ, which implies that the different learners have different 

importance  

 𝑓𝑒𝑛𝑠̃(𝒙(𝜏)) = ∑ 𝛼ℎ

𝐻

ℎ=1

𝑓ℎ̃(𝒙(𝜏)) (1) 

where 

∑ 𝛼ℎ = 1;   𝛼ℎ ≥ 0;   ℎ = 1, … , 𝐻

𝐻

ℎ=1

 (2) 

 

a. Error ambiguity decomposition 

In this Subsection, we motivate the use of ensemble learning to enhance RUL predictions of a test 

equipment. Referring to the ensemble generalization error as 𝐺𝐸(𝑓𝑒𝑛𝑠̃), one can show that the 

following error-ambiguity decomposition holds (for more details, see the Appendix): 

 

𝐺𝐸(𝑓𝑒𝑛𝑠̃) = 𝐺𝐸̅̅ ̅̅ (ℎ) − 𝑎𝑚𝑏𝑖̅̅ ̅̅ ̅̅ ̅(ℎ) (3) 

 

where 𝐺𝐸̅̅ ̅̅ (ℎ) = ∑ 𝛼ℎ𝐺𝐸(𝑓ℎ̃)𝐻
ℎ=1  is the weighted average of the ℎ𝑡ℎ individual base learner 

generalization error 𝐺𝐸(𝑓ℎ̃); and 𝑎𝑚𝑏𝑖̅̅ ̅̅ ̅̅ ̅(ℎ) = ∑ 𝛼ℎ𝑎𝑚𝑏𝑖(𝑓ℎ̃)𝐻
ℎ=1  is the weighted average of the ℎ𝑡ℎ 

individual base learner ambiguity 𝑎𝑚𝑏𝑖(𝑓ℎ̃) defined in Appendix. The quantity 𝑎𝑚𝑏𝑖(𝑓ℎ̃) quantifies 

how much the ℎ𝑡ℎ base learner predictions , 𝑓ℎ,̃  differ from the ensemble predictions. On the right-

hand of Eq. (3), the first term 𝐺𝐸̅̅ ̅̅ (ℎ) represents the individual learner average error, which depends 

on the generalization ability of individual base learners whereas the second term 𝑎𝑚𝑏𝑖̅̅ ̅̅ ̅̅ ̅(ℎ) represents 

the ambiguity, which depends on the ensemble diversity. Since the second term is always positive, 



and it is subtracted from the first term, it is clear that the error of the ensemble will never be larger 

than the average error of the individual base learners. Further, Eq. (11) shows that the more accurate 

and the more diverse the individual learners, the better the ensemble. 

b. Ensemble Generation 

According to the error-ambiguity decomposition discussed in Subsection 3.1, ensemble diversity, 

i.e., the difference among the individual base learners is a fundamental issue in ensemble learning. 

Therefore, since complementarity is more important than pure accuracy (Zhou, 2012), an ensemble 

formed by only very accurate learners can provide worse performances than one formed by also some 

relatively weak learners. Two approaches are typically used to generate diverse base learners: 

• Homogeneous ensemble generation: different base learners are generated using the same 

prognostic algorithm and diversity is achieved by manipulating data in different ways: 

subsampling from the training set (e.g., bagging ((Zhou, 2012))) or using different subsets of 

features. 

• Heterogeneous ensemble generation: different base models are generated using different 

prognostic algorithms. 

In this work, we have resorted to heterogeneous ensemble generation since it has been shown able 

to provide better performance than homogenous ensemble methods in cases of few low-dimensional 

data (Rathore & Kumal, 2017). 

c. Setting the ensemble base model weights 𝛼ℎ 

The data extracted from the available 𝑁 run-to-failure degradation trajectories of similar 

components are divided into training, validation and test subsets, formed by 𝑃𝑡𝑟𝑎𝑖𝑛, 𝑃𝑣𝑎𝑙𝑖𝑑 and 𝑃𝑡𝑒𝑠𝑡 

instances, respectively. The training subset is used to build the 𝐻 individual base models, the 

validation subset to assign them weights to be used for the aggregation of the individual model 

outcomes (Eq. (1)) and the test subset to verify the final ensemble performance. The weight 𝛼ℎ 

associate to the ℎ𝑡ℎ base learner is calculated based on its performance in predicting the RUL of the 

validation set patterns. Performance is measured resorting to the Empirical Generalization Error 

(EGE), which for the  ℎ𝑡ℎ base learner is defined as the mean squared error on validation set patterns:  

  

𝐺𝐸̂(𝑓ℎ̃) =
1

𝑃𝑣𝑎𝑙𝑖𝑑
∑

1

𝑛𝑝
∑ (𝑦𝑝(𝜏𝑝) − 𝑓ℎ̃ (𝒙𝒑(𝜏𝑝)))

2
𝑛𝑝

𝜏𝑝=1

𝑃𝑣𝑎𝑙𝑖𝑑

𝑝=1

 (4) 

 

In this work, we have considered weights proportional to the inverse of the EGE, i.e., 

 



𝛼ℎ =

1

𝐺𝐸̂(𝑓ℎ̃)

∑
1

𝐺𝐸̂(𝑓𝑙̃)
𝐻
𝑙=1

   ℎ = 1, … , 𝐻 (5) 

4. PROGNOSTIC PERFORMANCE METRICS 

 

In addition to EGE, we have considered other performance metrics, which are typically considered 

(Rigamonti et al., 2017) for quantitatively assessing and comparing the point prediction performance 

of different prognostic algorithms (Saxena et al., 2009). A brief description of the implemented 

metrics is given hereafter considering a generic test trajectory (𝒙(𝜏), 𝑦(𝜏)), 𝜏 = 1, … , 𝑛 and a general 

base learner  𝑓.̃ 

 

• Relative Accuracy (RA):  

𝑅(𝑓) = ∑ exp (−
|𝑓(𝑥(𝜏) − 𝑦(𝜏)|

𝑦(𝜏)
)

𝑛

𝜏

    (6) 

 

Notice that 𝑅(𝑓) is in the range [0,1] and the larger the relative accuracy the more accurate is the 

model. 

 

• Precision:  

 

𝑃 = √
∑ (𝑒(𝜏) − 𝑒 ̅)2 𝑛

𝜏=1

𝑛
 (7) 

 

       𝑒(𝜏) = 𝑓(𝑥(𝜏)) − 𝑦(𝜏) (8) 

 

 𝑒 ̅ =
1

𝑛
∑ 𝑒(𝜏)

𝑛

𝜏=1

 (9) 

 

This measure quantifies the dispersion (stability) of the prediction error around its mean. Closer to 

zero is the precision, more stable is the model. 

 



5. CASE STUDY 

This Section presents the results of the application of the proposed method to Tetra Pak® A3/Flex 

filling knife condition monitoring data.  

We have available run-to failure-degradation trajectories from 𝑁 = 10 different knives. For each 

knife, we have available  m = 2 health indicators which have been extracted using the procedure 

presented in (Cannarile et al., 2017b).  

In this work, a heterogeneous ensemble generation has been developed considering H = 4 

prognostic algorithms:  

• Gaussian Process Regression with Squared Exponential (GPRSE) covariance function; 

• GRP with Matern 3/2 (GRPM) covariance function; 

• Support Vector Regression with Gaussian Kernel (SVRGK); 

• SVR with Quadratic Polynomial Kernel (SVRQPK). 

These algorithms have been selected, since they have proved to be effective also when few training 

data with no clear patterns of regularity are available for training (Domingos, 2012). To properly 

compare the performance of the ensemble model with that of each base model, we have resorted to a 

twice nested Leave-One-Out-Cross-Validation (LOOCV) approach. The outer loop is to assess the 

performance of the ensemble and the single base learners, whereas the inner loop allows setting the 

weights αh, h = 1, . . ,4. In practice, the weights associates to the base learners are computed on each 

outer-validation set (using the inner LOOCV loop) and the final performance is measured on the 

corresponding outer-testing set (see Figure 1).  

 

 

 
 
 
 
 
 
 
 
 

 
 

 

 

 

 

Figure 1: Twice nested LOOCV 

 



Table 1 compares the performances of the developed ensemble model with that of the GRPM 

model, which has resulted to be the best performing individual model.  

 

 Ensemble GRPM 

Empirical Generalization Error 
(EGE) 

(best value 0) 

 3.2991 3.7127 

Relative Accuracy  
(RA) 

(best value 1) 

0.8149 0.7804 

Precision 
(best value 0) 

0.0569 0.0633 

 

Table 1: Comparison between the ensemble and the GRPM performances 

 

Notice that the ensemble model performs better than GRPM in all the considered metrics. In 

particular, the average EGE is 11.14% lower (more satisfactory) than that of GRPM, the relative 

accuracy of the ensemble is 3.34% larger (more satisfactory) than that of GRPM, whereas, the two 

methods are comparable from the point of view of the precision. Finally, Figs. 2 and 3 show the RUL 

predicted by the ensemble and GRPM for two representative test trajectories.  

 

 

Figure 2: Predicted RUL by the ensemble (diamonds) and GRPM (exagon) for a test trajectory. 



 

Figure 3: Predicted RUL by the ensemble (diamonds) and GRPM (exagon) for a test trajectory. 

The most satisfactory ensemble predictions tend to be at the begininning of the life of the test knife. 

This is reflected by the great improvement of the EGE metric, which is more sensible to errors at the 

beginning of the run to failure trajectory than the relative accuracy. 

6. CONCLUSIONS 
 

In this work, we have developed a heterogeneous ensemble model for enhancing the accuracy of 

the RUL prediction of knives used in the packaging industry. Thanks to the diversity of the base 

learner algorithms, the proposed approach has been shown capable of reducing the generalization 

error and providing more accurate RUL predictions compared to that of each individual base learner 

in the ensemble. 
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APPENDIX 
 

Given an instance 𝒙 = 𝒙(𝜏), the ambiguity of the individual base learner  𝑓ℎ̃ is defined as 
 
 

𝑎𝑚𝑏𝑖(𝑓ℎ̃|𝒙) = (𝑓ℎ̃(𝒙) − 𝑓𝑒𝑛𝑠̃(𝒙))
2

   ℎ = 1, … , 𝐻 (10) 

 



and the ambiguity of the ensemble is 

𝑎𝑚𝑏𝑖̅̅ ̅̅ ̅̅ ̅(𝑓𝑒𝑛𝑠̃|𝒙) = ∑ 𝛼ℎ𝑎𝑚𝑏𝑖(𝑓ℎ̃|𝒙) =

𝐻

ℎ=1

= ∑ 𝛼ℎ (𝑓ℎ̃(𝒙) − 𝑓𝑒𝑛𝑠̃(𝒙))
2

𝐻

ℎ=1

 (11) 

 

The ambiguity term measures the disagreement among the individual base learners on instance 𝒙. 

If we use the Squared Error (SE) to measure the performance, then, the error of the individual base 

learner  𝑓ℎ̃ and the ensemble  𝑓𝑒𝑛𝑠̃ are, respectively, 

 

𝑆𝐸(𝑓ℎ̃|𝒙) = (𝑓ℎ̃(𝒙) − 𝑓(𝒙))
2

   ℎ = 1, … , 𝐻 (12) 

 

𝑆𝐸(𝑓𝑒𝑛𝑠̃|𝒙) = (𝑓𝑒𝑛𝑠̃(𝒙) − 𝑓(𝒙))
2

   (13) 

 

Then, one can show that (Zhou, 2012) 

 

𝑎𝑚𝑏𝑖̅̅ ̅̅ ̅̅ ̅(𝑓𝑒𝑛𝑠̃|𝒙) = 𝑆𝐸̅̅̅̅ (ℎ̃|𝒙) − 𝑆𝐸(𝑓𝑒𝑛𝑠̃|𝒙) (14) 

 

where 𝑆𝐸̅̅̅̅ (ℎ̃|𝒙) = ∑ 𝛼ℎ
𝐻
ℎ=1 𝑆𝐸(𝑓ℎ̃|𝒙) is the weighted average of the individual base learner errors. 

Since Eq. (14), holds for every instance 𝒙, after averaging over the input distribution 𝑝(𝒙) from which 

the instances are sampled, it still holds that  

 

 

∑ 𝛼ℎ ∫ 𝑎𝑚𝑏𝑖(𝑓ℎ̃|𝒙)𝑝(𝒙) 𝑑𝒙 =

𝐻

ℎ=1

= ∑ 𝛼ℎ ∫ 𝑆𝐸(𝑓ℎ̃|𝒙)𝑝(𝒙) 𝑑𝒙

𝐻

ℎ=1

− ∫ 𝑆𝐸(𝑓𝑒𝑛𝑠̃|𝒙)𝑝(𝒙) 𝑑𝒙 (15) 

 

 

The generalization error and the ambiguity of the individual base learner  𝑓ℎ̃, can be written as, 

respectively,  

𝐺𝐸(𝑓ℎ̃) = ∫ 𝑆𝐸(𝑓ℎ̃|𝒙)𝑝(𝒙) 𝑑𝒙    ℎ = 1, … , 𝐻 (16) 

 

𝑎𝑚𝑏𝑖(𝑓ℎ̃) = ∫ 𝑎𝑚𝑏𝑖(𝑓ℎ̃|𝒙)𝑝(𝒙)𝑑𝒙 

 ℎ = 1, … , 𝐻 
(17) 

 

Similarly, the generalization error of the ensemble reads  

 

 

𝐺𝐸(𝑓𝑒𝑛𝑠̃) = ∫ 𝑆𝐸(𝑓𝑒𝑛𝑠̃|𝒙)𝑝(𝒙) 𝑑𝒙    ℎ = 1, … , 𝐻 (18) 

 



 

Based on the notation just introduced and Eq. (14), we obtain the error-ambiguity decomposition 

(Zhou, 2012): 

 
𝐺𝐸(𝑓𝑒𝑛𝑠̃) = 𝐺𝐸̅̅ ̅̅ (ℎ) − 𝑎𝑚𝑏𝑖̅̅ ̅̅ ̅̅ ̅(ℎ) (19) 

 

 


