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Abstract

Multi-State (MS) reliability models are used in practice to describe the evolution of degradation in

industrial components and systems. To estimate the MS model parameters, we propose a method

based on the Fuzzy Expectation-Maximization (FEM) algorithm, which integrates the evidence of

the field inspection outcomes with information taken from the maintenance operators about the

transition times from one state to another. Possibility distributions are used to describe the

imprecision in the expert statements. A procedure for estimating the Remaining Useful Life (RUL)

based on the MS model and conditional on such imprecise evidence is, then, developed. The

proposed method is applied to a case study concerning the degradation of pipe welds in the coolant

system of a Nuclear Power Plant (NPP). The obtained results show that the combination of field

data with expert knowledge can allow reducing the uncertainty in degradation estimation and RUL

prediction.
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1. INTRODUCTION

Multi-State (MS) degradation modelling is receiving considerable attention in the domain of

reliability and maintenance engineering (Zio, 2016), due the fact that MS models offer a description

of the degradation evolution which is more realistic than that given by binary models: the evolution

of many degradation processes proceeds in successive phases, which reflect the relative degree of

deterioration (Moghaddass & Zuo, 2014). A further reason which justifies the growing interest in

MS degradation models is their fit with the field maintenance data acquired from the operating

systems. For example, operators typically assign a qualitative tag to the equipment health during

periodic inspections such as ‘not degraded’, ‘slightly degraded’, ‘badly degraded’, etc.

Given these characteristics, MS models have been adopted to describe the evolution of degradation

of components of diverse application fields: membranes of pumps operating in Nuclear Power

Plants (NPPs) (Baraldi et al., 2011), turbine nozzles for the Oil&Gas industry (Compare et al.,

2016), turbofan engines (Moghaddas & Zuo, 2014), Diesel engines (Giorgio et al., 2011), to cite a

few.

A Multi-State (MS) degradation model has also been developed in (Fleming and Smit, 2008) for the

Piping System (PS) of NPPs, where PSs are highly risk-sensitive structural elements (Gopika et al.,

2003; Di Maio et al., 2015). In details, in the model by (Fleming & Smit, 2008), which is general

enough to represent all known NPP pipe failure mechanisms (Fleming, 2004), the degradation

process affecting a PS is discretized into four states, each one associated to a physically different

phenomenon, with state transition rates that are taken constant over time and, consequently, sojourn

times in each state that obey exponential distributions (e.g., Fleming & Smit, 2008). However, it has

been shown in (Veeramany & Pandey, 2011; Chatterjee & Modarres, 2008), that the constant rate
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assumption is not coherent with the evidence coming from many real industrial applications. Thus,

to overcome the limitation of constant transition rates, the theoretical framework of the

Homogeneous Continuous-Time Semi-Markov Processes (HCTSMPs, Howard, 1964) has been

embraced to develop MS degradation models, which allow considering arbitrary sojourn time

distributions, thus, taking into account the influence of the history of the degradation process on its

future evolution. In particular, (Veeramany & Pandey, 2011) developed a HCTSMP model to

describe the degradation of PSs in NPPs.

For practical application, the estimation of the parameters of the MS semi-Markov degradation

model, with associated uncertainty, is fundamental and different approaches have been proposed in

the literature to adjust the model to the knowledge, information and data available.

When sufficient field data is available, statistical techniques such as Maximum Likelihood

Estimation (MLE) can be adopted (Zio, 2007; Gosselin & Fleming, 1997). However, the availability

of rich datasets of NPP PS degradation and maintenance data is not typical and the problem of

parameter estimation is further complicated by at least two other aspects:

● The inherent complexity of the PSs in NPPs and diversity in the degradation influenced by

operating and ambient conditions (Tipping, 2010); then, it becomes difficult to identify

mechanisms and homogeneous populations of PS for statistical inference.

● The possible noninformativeness of the data, i.e., of the outcomes of inspections performed

every 2-5 years, in which the PS is typically found in the first degradation states, due to its

very high reliability (Nánási, T., 2014; Fleming, 2004; Veeramany & Pandey, 2011;

Simonen & Goselin, 2001).

With this scarcity of data, it is necessary to exploit any additional knowledge or information

available to build more accurate reliability models (Zio, 2016). In this respect, Probabilistic Fracture

Mechanics (PFM) models have been developed to predict PS crack initiation and growth from

existing flaws (Verma & Srividya, 2011), which combine the knowledge about the physics of the

crack propagation, modelled as a stochastic process, with PS service data that are used to tune the

PFM model parameters. However, (Fleming, 2004) pointed out that one main limitation of the PFM

approach is that the data used for model setting reflect the influence of previous PS inspection

programs; thus, changes in these programs may introduce biases in the transition rates estimates.

In the present work, we consider that additional information on the occurrence of state transitions

can be obtained from experts to supplement field data. Namely, we assume that experts can give

statements such as “The pipe transition from detectable flaw state to detectable leak state occurred
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between 1998 and 2000, March 1999 being the expected month for this transition”. Obviously, the

imprecision in these qualitative statements need to be properly represented and combined with the

field data.

Bayesian statistics is often adopted to this aim, starting from the elicitation from experts of prior

distributions of the model parameters and following with their update based on to the field evidence

collected (Compare et al., 2017a). Markov Chain Monte Carlo algorithms (Robert & Casella, 2004)

can be used to estimate the posterior distributions of the multi-state model parameters, which

encode both the prior expert knowledge and the field evidence. However, the representation by

probability distributions of the imprecision in the qualitative expert statements is debatable, as it has

been argued that the probabilistic approach in situations of scarce evidence tends to force

assumptions that may not be justified by the available information (Aven et al., 2014; Baudrit et al.,

2008; Bowles & Peláez, 1995). For this reason, we here use possibility distributions to represent the

imprecision in the expert statements about the transition times, to “imperfectly specify a value that

is existing and precise, but not measurable with exactitude under the given observation conditions”

(Denoeux, 2011).

To estimate the MS model parameters from partially observed data, we resort to the Fuzzy

Expectation-Maximization (FEM) algorithm (Denoeux, 2011); this uses the Zadeh’s extension

principle to extend the application of standard statistical approaches to possibility distributions,

which are formally coincident with the membership functions of fuzzy sets (Dubois, 2006).

Finally, based on the MS degradation model, we propose a methodology to estimate the Remaining

Useful Life (RUL) of the NPP PSs.

To sum up, the main contributions of the present work are:

1. The development of a methodology to estimate the parameters of a MS degradation model,

which exploits both data from inspection outcomes and expert information.

2. The development of a methodology to estimate the RUL, conditional on imprecise evidence.

The remainder of the paper is organized as follows. Section 2 describes the problem settings, the

available information and data. Section 3 illustrates the methodology to estimate the unknown

parameters of the HCTSMP model in the considered settings. In Section 4, the methodology to

estimate the RUL is illustrated. The application of the developed methodologies to a case study

concerning simulated PS degradation paths is reported in Section 5. Finally, Section 6 concludes the

work.
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2. Problem Settings

To focus concretely the illustration of our work, we develop a MS model derived from the 4-states

model proposed by (Fleming, 2004) for describing degradation in PSs of NPPs (Figure 1).

Figure 1: Sketch of MS model.

In state 1, the PS is assumed to be in an as good as new state; flaws are present but not detectable.

These gradually grow until they become detectable, whose condition is represented by state 2. Then,

the PS further degrades and a leak becomes detectable (state 3). Finally, the leak extends until it

leads to rupture (state 4) (Veeramany & Pandey, 2011). Pipes are assumed to be non-repairable: this

means that in the representation of the model (Figure 1), the transitions only go from left-to-right

and also that state 4 is an absorbing state (i.e., once reached, it cannot be left).

The random transition time, , from state to state is assumed to obey a Weibull𝑇
𝑖→𝑖+1

𝑖 𝑖 + 1

distribution (Cannarile et al., 2015a), with scale parameter and shape parameter , .α
𝑖

β
𝑖

𝑖 = 1,  2,  3

The probability density function (PDF) of is given by𝑇
𝑖→𝑖+1

𝑓
𝑇

𝑖→𝑖+1

𝑡
𝑖→𝑖+1( ) =
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𝑖

α
𝑖

•
𝑡

𝑖→𝑖+1

α
𝑖

( )(β
𝑖
−1)

exp 𝑒𝑥𝑝 −
𝑡

𝑖→𝑖+1

α
𝑖

( )β
𝑖( )         𝑡

𝑖→𝑖+1
> 0,  α

𝑖
> 0, β

𝑖
> 0 (1)

and the corresponding Cumulative Distribution Function (CDF) , reliability function𝐹
𝑇

𝑖→𝑖+1

𝑡
𝑖→𝑖+1( )

and transition rate are, respectively:𝑅
𝑇

𝑖→𝑖+1

𝑡
𝑖→𝑖+1( ) λ

𝑇
𝑖→𝑖+1

𝑡
𝑖→𝑖+1( )
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𝐹
𝑇
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𝑡
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0
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∫ 𝑓
𝑇

𝑖→𝑖+1

𝑡( )𝑑𝑡 = 1 − 𝑒
−

𝑡
𝑖→𝑖+1

α( )β
𝑖

(2)

𝑅
𝑇

𝑖→𝑖+1

𝑡
𝑖→𝑖+1( ) = exp 𝑒𝑥𝑝 −

𝑡
𝑖→𝑖+1

α
𝑖
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> 0,  α

𝑖
> 0, β

𝑖
> 0 (3)

λ
𝑇

𝑖→𝑖+1

𝑡
𝑖→𝑖+1( ) =

β
𝑖

α
𝑖

•
𝑡
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α
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( )(β
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        𝑡
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> 0,  α
𝑖

> 0, β
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> 0 (4)

The choice of relying on Weibull distributions is justified by practical reasons: Weibull distributions

are the probability distributions most commonly used in reliability engineering to describe the

degradation processes of industrial components in the semi-Markov framework (Boutros et al.,

2011) (Moghadass & Zuo, 2012), (Compare et al. 2017b), (Giorgio et al., 2011) due to their

flexibility and the clear meaning of the distribution parameters. For this reason, experts of different

industrial fields feel comfortable with using Weibull distributions to characterize the evolution of

the degradation processes.

2.1. Available data

We assume that a dataset is available containing the inspection outcomes of NPP PSs, whose𝐷 𝑁

degradation evolves according to the HCTSMM described above. We also assume that each

component is perfectly working (i.e., it is in state 1) at time and is inspected with period𝑡 = 0 τ

over the mission time .𝑇
𝑚

We indicate by the number of inspections performed on the component through its mission𝑀
𝑛

𝑛𝑡ℎ

time , whereas represents the first inspection at which the component is found in state ,𝑇
𝑚

𝑘
𝑛,𝑖

𝑛𝑡ℎ 𝑖

with and ,𝑘
𝑛,1

= 0 𝑘
𝑛,𝑖

∈ 1, …,  𝑀
𝑛{ } 𝑖 = 2, 3, 4.

In this setting, the transition time of the PS, from state to state ,𝑡
𝑛,  𝑖→𝑖+1

𝑛𝑡ℎ 𝑛 = 1…𝑁,  𝑖 𝑖 + 1

, can be regarded as a realization of the random variable , induced by randomly𝑖 = 1,  2,  3 𝑇
𝑖→𝑖+1

sampling from a population of NPP PSs (Denoeux, 2011), although a censoring mechanism avoids

observing transition times that would occur after the time horizon . In this respect, if𝑇
𝑚
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, where , then for simplicity we set ,𝑖
𝑛
* =

𝑗=1

𝑖

∑ 𝑡
𝑛,𝑗−1→𝑗

< 𝑇
𝑚( ) < 4 𝑡

𝑛,0→1
= 0 𝑘

𝑛,𝑠+1
= 𝑀

𝑛

. For example, if the component is found in state 3 at the end of the mission∀ 𝑠≥𝑖*∩ 𝑠∈ 2, 3, 4{ } 𝑛𝑡ℎ

time , then , , whereas is unknown, but larger than𝑇
𝑚

𝑖* = 3 𝑘
𝑛,3

= 𝑘
𝑛,4

= 𝑀
𝑛

𝑡
𝑛,3→4

.𝑇
𝑚

− (𝑡
𝑛,1→2

+ 𝑡
𝑛,2→3

)

On this basis, we introduce the binary variable for 𝑖 = 1,  2,  3

δ
𝑛,  𝑖→𝑖+1

= {0          𝑖𝑓 
𝑗=1

𝑖

∑ 𝑡
𝑛,𝑗−1→𝑗

< 𝑇
𝑚

   𝑎𝑛𝑑   𝑡
𝑛,  𝑖→𝑖+1

≤ 𝑇
𝑚

−
𝑗=1

𝑖

∑ 𝑡
𝑛,𝑗−1→𝑗

⎡⎢⎢⎣

⎤⎥⎥⎦
  1    𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠 (5)

to indicate whether is an actual transition time or a right-censored observation (Zio, 2007).𝑡
𝑛,  𝑖→𝑖+1

In words, is set to 0 if the transition from state to state occurred before , and to 1δ
𝑛,  𝑖→𝑖+1

𝑖 𝑖 + 1 𝑇
𝑚

otherwise (Cannarile et al., 2015b).

Moreover, even for uncensored transitions, cannot be directly observed; rather, we know𝑡
𝑛,𝑖→𝑖+1

that , and .𝑘
𝑛,𝑖+1

− 1( )τ≤[ 
𝑗=1

𝑖

∑ 𝑡
𝑛,𝑗−1→𝑗

+ 𝑡
𝑛,  𝑖→𝑖+1

]≤𝑘
𝑛,𝑖+1

τ 𝑘 = 1, …, 𝑀
𝑛

𝑖 = 1,  2,  3

Formally, the available dataset can be represented by , where ,𝐷 = (𝑡,  δ) 𝑡 = [𝑡
1
, …𝑡

𝑁
]

, , and𝑡
𝑛

= [𝑡
𝑛,0→1

, …, 𝑡
𝑛,𝑖

𝑛
* −1→𝑖

𝑛
*] δ = δ

1
,  …,  δ

𝑁[ ] δ
𝑛

= [δ
𝑛,  1→2

, δ
𝑛,  2→3

,  δ
𝑛, 3→4

],  𝑛 = 1, …, 𝑁.

2.2. Information from experts

When the expert inspects the component, he/she can add additional information on the transition

times, based on his/her knowledge. We assume that expert statements about the unknown  𝑡
𝑛,  𝑖→𝑖+1

give:

1. An interval in which the transition certainly occurred, where𝑡
𝑛,𝑖→𝑖+1

, 𝑡
𝑛,𝑖→𝑖+1

⎡⎢⎣
⎤⎥⎦

; . [ 
𝑗=1

𝑖

∑ 𝑡
𝑛,𝑗−1→𝑗

+ 𝑡
𝑛,𝑖→𝑖+1

]≥(𝑘
𝑛,𝑖+1

− 1)τ [ 
𝑗=1

𝑖

∑ 𝑡
𝑛,𝑗−1→𝑗

+ 𝑡
𝑛,𝑖→𝑖+1

]≤𝑘
𝑛,𝑖+1

τ
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2. A time instant in which the transition occurrence is fully𝑡⏞
𝑛,𝑖→𝑖+1

∈ 𝑡
𝑛,𝑖→𝑖+1

, 𝑡
𝑛,𝑖→𝑖+1

⎡⎢⎣
⎤⎥⎦

plausible.

For simplicity, these pieces of information are represented by triangular possibility distributions:

𝐿µ
𝑡
~

𝑛,  𝑖→𝑖+1

(𝑡
𝑖→𝑖+1

) = 𝑡
𝑛,𝑖→𝑖+1

, 𝑡⏞
𝑛,𝑖→𝑖+1

, 𝑡
𝑛,𝑖→𝑖+1( ) (6)

with support and core , (see Figure 2). Namely, expresses𝑡
𝑛,𝑖→𝑖+1

, 𝑡
𝑛,𝑖→𝑖+1

⎡⎢⎣
⎤⎥⎦

𝑡⏞
𝑛,𝑖→𝑖+1

µ
𝑡
~

𝑛,  𝑖→𝑖+1

(𝑡
𝑖→𝑖+1

)

the degree of possibility that the true value of is : when , then the𝑇
𝑖→𝑖+1

𝑡
𝑖→𝑖+1

µ
𝑡
~

𝑛,  𝑖→𝑖+1

𝑡
𝑖→𝑖+1( ) = 0

outcome is considered impossible by the expert, whereas means that the𝑡
𝑖→𝑖+1

µ
𝑡
~

𝑛,  𝑖→𝑖+1

𝑡
𝑖→𝑖+1( ) = 1

outcome is fully plausible, expected by the expert (Aven et al., 2014).𝑡
𝑖→𝑖+1

Notice that the triangular shape for the possibility distribution is the appropriate choice when the

expert is willing to specify the most likely value that can assume (Aven et al., 2014). 𝑡
𝑛,  𝑖→𝑖+1

Figure 2: Possibility distribution example for the information , , .𝑡
𝑛,𝑖→𝑖+1

= 3 𝑡⏞
𝑛,𝑖→𝑖+1

= 3. 667 𝑡
𝑛, 𝑖→𝑖+1

= 4

3. Parameter Estimation

The aim of this Section is estimating the parameters ( ) of the Weibull distributions. Weα
𝑖
,  β

𝑖

consider two different situations:

● The only source of information available is dataset . In this standard case, we can apply the𝐷

MLE approach.
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● Also information provided by experts about transition times is available, described in the

form of possibility distributions In this case, weµ
𝑡
~

𝑛,  𝑖→𝑖+1

𝑡
𝑖→𝑖+1( ),  𝑖 = 1,  2,  3,  𝑛 = 1, …, 𝑁.

use the FEM algorithm proposed in (Denoeux, 2011).

The comparison of these two settings allows highlighting the benefit of exploiting the information

coming from experts.

For clarity of presentation, the distribution parameters are indicated by whereϑ = ϑ
1
, ϑ

2
, ϑ

3[ ],

, .ϑ
𝑖

= [α
𝑖
,  β

𝑖
] 𝑖 = 1, 2, 3

3.1. Estimation based on inspection outcomes, only

The application of MLE requires defining the likelihood function, which is given by:

𝐿 ϑ|𝐷( ) =
𝑛=1

𝑁

∏
𝑖=1

3

∏  𝐹
𝑇

𝑖→𝑖+1

(𝑘
𝑛,𝑖+1

τ) −  𝐹
𝑇

𝑖→𝑖+1

((𝑘
𝑛,𝑖+1

− 1)τ)⎡
⎢
⎣

⎤
⎥
⎦

δ
𝑛,𝑖→𝑖+1

∙ 𝑅
𝑇

𝑖→𝑖+1

𝑇
𝑚

− 𝑘
𝑛,𝑖

τ( )(1−δ
𝑛⎡

⎢
⎢
⎣

(7)

where the difference represents the probability of finding𝐹
𝑇

𝑖→𝑖+1

(𝑘
𝑛,𝑖+1

τ) −  𝐹
𝑇

𝑖→𝑖+1

((𝑘
𝑛,𝑖+1

− 1)τ)

the component for the first time in state at inspection , provided that it was in state at𝑖 + 1 𝑘
𝑛,𝑖+1

𝑖

inspection , whereas indicates the probability of spending time(𝑘
𝑛,𝑖

− 1) 𝑅
𝑇

𝑖→𝑖+1

𝑇
𝑚

− 𝑘
𝑛,𝑖

τ( )
in state . The quantity determines which of the two contributions has to be𝑇

𝑚
− 𝑘

𝑛,𝑖
τ( ) 𝑖 δ

𝑛,𝑖→𝑖+1

considered for the component, depending on the censoring mechanism it has undergone.𝑛𝑡ℎ 

The corresponding log-likelihood can be written as:

𝐿 ϑ|𝐷( ) = 𝐿
1→2

θ
1
|𝐷( ) + 𝐿

2→3
θ

2
|𝐷( ) + 𝐿

3→4
θ

3
|𝐷( ) =

𝑖=1

3

∑ 𝐿
𝑖→𝑖+1

θ
𝑖
|𝐷( ) (8)

where

𝐿
𝑖→𝑖+1

ϑ
𝑖
|𝐷( ) =

𝑛=1

𝑁

∑ log 𝑙𝑜𝑔  𝐹
𝑇

𝑖→𝑖+1

𝑘
𝑛,𝑖+1

τ( ) −  𝐹
𝑇

𝑖→𝑖+1

𝑘
𝑛,𝑖+1

− 1( )τ( )⎡
⎢
⎣

⎤
⎥
⎦

δ
𝑛,𝑖→𝑖+1

𝑅
𝑇

𝑖→𝑖+1

𝑇((
𝑗=1

𝑖

∑ 𝑡
𝑛,𝑗−1→𝑗

< 𝑘
𝑛,𝑖

− 1( )τ,  𝑖 = 1, 2, 3

(9)
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The estimation of is given by:ϑ
^

𝑚𝑙𝑒
ϑ

ϑ
^

𝑚𝑙𝑒
=  𝐿 ϑ|𝐷( ) (10)

Notice that Equations (8) - (9) simplify the estimation of . In fact, each of the threeϑ
^

𝑚𝑙𝑒

contributions depends on the two parameters ( ), only. Then, one can divide𝐿
𝑖→𝑖+1

,  𝑖 = 1,  2,  3 α
𝑖
, β

𝑖

the maximization problem in Equation (7) into three simpler sub-problems, which can be solved

independently on each other.

3.2. Estimation based on inspection outcomes and information elicited from experts

To show the methodology to estimate based on the possibility distributions , we first deriveϑ µ
𝑡
~

𝑛,  𝑖→𝑖+1

the likelihood function as if we exactly knew the transition times . On this basis, we will𝑡
𝑛,𝑖→𝑖+1

easily extend this function to the case of imprecise transition times . 𝑡
~

𝑛,  𝑖→𝑖+1

Analogously to the previous case, the likelihood function reads:

𝐿 ϑ|𝐷( ) =
𝑛=1

𝑁

∏
𝑖=1

3

∏ 𝑓
𝑇

𝑖→𝑖+1

𝑡
𝑛,𝑖→𝑖+1( )δ

𝑛,𝑖→𝑖+1 • 𝑅
𝑇

𝑖→𝑖+1

𝑇
𝑚

−
𝑗=1

𝑖

∑ 𝑡
𝑛,𝑗−1→𝑗( )(1−δ

𝑛,𝑖→𝑖+1
)⎡

⎢
⎢
⎣

⎤
⎥
⎥
⎦

(11)

where the pdf is used instead of , because𝑓
𝑇

𝑖→𝑖+1

𝑡
𝑛,𝑖→𝑖+1( ) 𝐹

𝑇
𝑖→𝑖+1

(𝑘
𝑛,𝑖+1

τ) −  𝐹
𝑇

𝑖→𝑖+1

((𝑘
𝑛,𝑖+1

− 1)τ)

in this case we are assuming to know the transition times. Notice that the conditioning on in𝐷

Equation (11) also concerns the fact that

(
𝑗=1

𝑖

∑ 𝑡
𝑛,𝑗−1→𝑗

+ 𝑡
𝑛,𝑖→𝑖+1

)∈ (
𝑗=1

𝑖

∑ 𝑡
𝑛,𝑗−1→𝑗

+ 𝑡
𝑛,𝑖→𝑖+1

), (
𝑗=1

𝑖

∑ 𝑡
𝑛,𝑗−1→𝑗

+ 𝑡
𝑛,𝑖→𝑖+1

)
⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦
 ⊆[(𝑘

𝑛,𝑖+1
− 1)τ, 𝑘

𝑛,𝑖+1
τ]

, if =0.δ
𝑛,𝑖→𝑖+1
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Analogously to Equation (7), Equation (11) can be divided in three parts to divide the maximization 

problem into three easier sub-problems and, thus, simplify the parameter estimation problem:

𝐿 ϑ|𝐷( ) = 𝐿
1→2

α
1
,  β

1
|𝐷( ) + 𝐿

2→3
α

2
,  β

2
|𝐷( ) + 𝐿

3→4
α

3
,  β

3
|𝐷( ) (12)

where

𝐿
𝑖→𝑖+1

ϑ
𝑖
|𝐷( ) =

𝑛=1

𝑁

∑ 𝑙𝑜𝑔 𝑓
𝑇

𝑖→𝑖+1

 𝑡
𝑛,𝑖→𝑖+1( )δ

𝑛,𝑖→𝑖+1 • 𝑅
𝑇

𝑖→𝑖+1

𝑇
𝑚

−
𝑗=1

𝑖

∑ 𝑡
𝑛,𝑗−1→𝑗( ) 1−δ

𝑛,𝑖→𝑖+1( )⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦
,  𝑖 = 1 (13)

When the information about is represented by the possibility distribution , then the𝑇
𝑛,𝑖→𝑖+1

µ
𝑡
~

𝑛,  𝑖→𝑖+1

likelihood in Equation (11) reads (Denoeux, 2011):

𝐿
~

ϑ|𝐷( ) =
𝑛=1

𝑁

∏
𝑖=1

3

∏ 𝑓
~

𝑇
𝑖→𝑖+1

𝑡
𝑛,𝑖→𝑖+1( )

δ
𝑛,𝑖→𝑖+1

• 𝑅
𝑇

𝑖→𝑖+1

𝑇
𝑚

−
𝑗=1

𝑖

∑ 𝑡
𝑛,𝑗−1→𝑗( )(1−δ

𝑛,𝑖→𝑖+1
)⎡

⎢
⎢
⎣

⎤
⎥
⎥
⎦

(14)

where

𝑓
~

𝑇
𝑖→𝑖+1

𝑡
𝑛,𝑖→𝑖+1( ) =

0

+∞

∫ µ
𝑡
~

𝑛,  𝑖→𝑖+1

𝑡
𝑖→𝑖+1( ) • 𝑓

𝑇
𝑖→𝑖+1

𝑡
𝑖→𝑖+1( )𝑑𝑡

𝑖→𝑖+1
=

𝑡
𝑛,𝑖→𝑖+1

𝑡
𝑛,𝑖→𝑖+1

∫ µ
𝑡
~

𝑛,  𝑖→𝑖+1

𝑡
𝑖→𝑖+1( ) • 𝑓

𝑇
𝑖→𝑖+

(15)

That is, the imprecise evidence represented by the possibility distribution forces toµ
𝑡
~

𝑛,  𝑖→𝑖+1

𝑡
𝑖→𝑖+1( )

change into through Equation (15), which applies the Zadeh’s𝑓
𝑇

𝑖→𝑖+1

(𝑡
𝑛,𝑖→𝑖+1

) 𝑓
~

𝑇
𝑖→𝑖+1

𝑡
𝑛,𝑖→𝑖+1( )

definition of probability of a fuzzy event (Denoeux, 2011; Zadeh, 1996 ). Notice that is not𝑅
𝑇

𝑖→𝑖+1

affected by fuzzy uncertainty as it relates to the case in which the transition has not been observed.

The log-likelihood is given by:

𝐿
~

ϑ|𝐷( ) = 𝑙𝑜𝑔⁡( 𝐿
~

ϑ|𝐷( )) = 𝐿
~

1→2
α

1
,  β

1
|𝐷( ) + 𝐿

~
2→3

α
2
,  β

2
|𝐷( ) + 𝐿

~
3→4

α
3
, β

3
|𝐷( ) (16)

where
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𝐿
~

𝑖→𝑖+1
ϑ

𝑖
|𝐷( ) =

𝑛=1

𝑁

∑ 𝑙𝑜𝑔 𝑓
~

𝑇
𝑖→𝑖+1

𝑡
𝑛,𝑖→𝑖+1( )

δ
𝑛,𝑖→𝑖+1

• 𝑅
𝑇

𝑖→𝑖+1

𝑇
𝑚

−
𝑗=1

𝑖

∑ 𝑡
𝑛,𝑗−1→𝑗( ) 1−δ

𝑛,𝑖→𝑖+1( )⎡
⎢
⎢
⎣

⎤
⎥
⎥
⎦
,  𝑖 = 1, (17)

3.3. Fuzzy Expectation-Maximization algorithm

The EM algorithm has been proposed by (Dempster et al., 1977) as a broadly applicable and

efficient mechanism for computing maximum likelihood estimates. It is made up of two steps (i.e.,

expectation and maximization), which are iteratively performed until the maximum of the likelihood

function is achieved.

Inspired by the original EM algorithm, (Denoeux, 2011) has proposed an enhancement that extends

its application to fuzzy evidence. We resort to this method for the maximization of each in𝐿
~

𝑖→𝑖+1

Equation (17), .𝑖 = 1, 2, 3

Every iteration of the algorithm is composed by two steps:𝑞

STEP 1: Expectation step (E-step)

The expectation step requires the calculation of the expected value of the log-likelihood 𝐿
~

𝑖→𝑖+1

conditional to a set of fuzzy evidences:

𝑄 ϑ
𝑖
, ϑ

𝑖
𝑞( ) = 𝐸

ϑ
𝑖
𝑞[𝐿

~
𝑖→𝑖+1

|𝐷] (18)

which reads (Denoeux, 2011):

𝑄 ϑ
𝑖
, ϑ

𝑖
𝑞( ) =

𝑛=1

𝑁

∑ 0

+∞

∫ µ
𝑡
~

𝑛,𝑖→𝑖+1

𝑡
𝑖→𝑖+1( )log𝑙𝑜𝑔 𝐿 ϑ|𝐷( )[ ] 𝐿 ϑ𝑞|𝐷( )𝑑𝑡

𝑖→𝑖+1

0

+∞

∫ µ
𝑡
~

𝑛,𝑖→𝑖+1

(𝑡
𝑖→𝑖+1

)𝐿 ϑ𝑞|𝐷( )𝑑𝑡
𝑖→𝑖+1

⎧⎪
⎨⎪⎩

⎫⎪
⎬⎪⎭

(19)

Then, the expected value of in Equation (17) conditioned to the set of fuzzy𝑄 ϑ
𝑖
, ϑ

𝑖
𝑞( ) 𝐿

~
𝑖→𝑖+1

evidences , given the fit of at the current iteration , becomes:𝐷 ϑ
𝑖
𝑞 ϑ

𝑖
𝑞

𝑄 ϑ
𝑖
, ϑ

𝑖
𝑞( ) = (20)
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=
𝑛=1

𝑁

∑ 0

+∞

∫ µ
𝑡
~

𝑛,  𝑖→𝑖+1

𝑡
𝑖→𝑖+1( )•log𝑙𝑜𝑔 𝑓

𝑇
𝑖→𝑖+1

𝑡
𝑖→𝑖+1

|ϑ( )⎡
⎢
⎣

⎤
⎥
⎦
 •𝑓

𝑇
𝑖→𝑖+1

𝑡
𝑖→𝑖+1

|ϑ𝑞( )𝑑𝑡
𝑖→𝑖+1

0

+∞

∫ µ
𝑡
~

𝑛,  𝑖→𝑖+1

𝑡
𝑖→𝑖+1( )•𝑓

𝑇
𝑖→𝑖+1

𝑡
𝑖→𝑖+1

|ϑ𝑞( )𝑑𝑡
𝑖→𝑖+1

⎡
⎢
⎢
⎢
⎣

⎤
⎥
⎥
⎥
⎦

δ
𝑛,𝑖→𝑖+1

+  
𝑛=1

𝑁

∑ 𝑙𝑜𝑔⁡[𝑅
𝑇

𝑖→𝑖+1

𝑇
𝑚

−
𝑗=1

𝑖

∑ 𝑡
𝑛,𝑗−1→𝑗( )]

1−δ
𝑛,𝑖→𝑖+1( )

STEP 2: Maximization step (M-step)

The maximization step consists in maximizing with respect to . To do this, we need to𝑄 ϑ
𝑖
, ϑ

𝑖
𝑞( )  ϑ

𝑖

select an arbitrary guess vector which here is obtained by applying the standard MLE approachθ𝑞=0

to the same dataset. The first iteration of the M-step stops when is smaller than an arbitrary
∂𝑄 ϑ

𝑖
,ϑ

𝑞
 ( )

∂ϑ
𝑖

fixed tolerance. The obtained parameters will be the guess vector for the followingϑ𝑞=1

maximization step.

The expectation and maximization steps are iterated until the difference is𝐿
~

ϑ
𝑖
𝑞+1( ) − 𝐿

~
ϑ

𝑖
𝑞( )|||

|||

smaller than some arbitrary fixed tolerance.

4. Remaining Useful Life Estimation

Once the parameters and , , of the HCTSMM have been estimated, they can be usedα
𝑖

β
𝑖

𝑖 = 1,  2,  3

to estimate the PS RUL at any inspection time, with . To highlight the benefits of𝑘𝑡ℎ 𝑘 = 1, …, 𝑀
𝑛

including the expert knowledge in the model estimation parameters, we estimate the RUL in both

the settings illustrated in Sections 3.1 and 3.2 (i.e., based only on data, and on data with additional

imprecise information from the experts).

To this aim, we first consider the random variable , which represents the residual 𝑇
𝑖→𝑖+1

(𝑡
𝑖→𝑖+1

|𝑡
𝑛,𝑖
0 )

sojourn time in state , provided that the component has already been in state for years. The𝑖 𝑖 𝑡
𝑛,𝑖
0

PDF and CDF of conditional on are indicated by and𝑇
𝑖→𝑖+1

𝑡
𝑛,𝑖
0  𝑓

𝑇
𝑖→𝑖+1

(𝑡
𝑖→𝑖+1

|𝑡
𝑛,𝑖
0 )

, respectively. Accordingly, the expected value of the random variable𝐹
𝑇

𝑖→𝑖+1

𝑡
𝑖→𝑖+1

|𝑡
𝑛,𝑖
0( )

, is𝑇
𝑖→𝑖+1

(𝑡
𝑖→𝑖+1

|𝑡
𝑛,𝑖
0 ) 𝐸[𝑇

𝑖→𝑖+1
|𝑡

𝑛,𝑖
0 ]
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𝐸[𝑇
𝑖→𝑖+1

|𝑡
𝑛,𝑖
0 ] =      

𝑡
𝑛,𝑖
0

+∞

∫ 𝑡
𝑖→𝑖+1

− 𝑡
𝑛,𝑖
0( )𝑓

𝑇
𝑖→𝑖+1

𝑡
𝑖→𝑖+1

|𝑡
𝑛,𝑖
0( )𝑑𝑡

𝑖→𝑖+1
=

𝐸 𝑇
𝑖→𝑖+1[ ]−

0

𝑡
𝑛,𝑖
0

∫ 𝑡
𝑖→𝑖+1

•𝑓
𝑇

𝑖→𝑖+1

𝑡
𝑖→𝑖+1( )

𝑅
𝑇

𝑖→𝑖+1

𝑡
𝑛,𝑖
0( )

⎡
⎢
⎢
⎢
⎢
⎣

(21)

where represents the expected value of .𝐸 𝑇
𝑖→𝑖+1[ ] 𝑇

𝑖→𝑖+1

The quantile of can be derived from the inverse functionα − 𝑞
α

𝑇
𝑖→𝑖+1

|𝑡
𝑛,𝑖
0⎡⎢⎣

⎤⎥⎦ 𝑇
𝑖→𝑖+1

(𝑡
𝑖→𝑖+1

|𝑡
𝑛,𝑖
0 )

of .𝐹
𝑇

𝑖→𝑖+1

−1
(α|𝑡

𝑛,𝑖
0 ) 𝐹

𝑇
𝑖→𝑖+1

𝑡
𝑖→𝑖+1

|𝑡
𝑛,𝑖
0( )

Suppose that at the inspection time , the component is found in state ; then, its RUL is the  𝑘τ 𝑖

random variable defined as:𝑅𝑈𝐿(𝑘τ)

𝑅𝑈𝐿  𝑘τ( ) = 𝑇
𝑖→𝑖+1

𝑡
𝑖→𝑖+1

|𝑡
𝑛,𝑖
0( ) +

𝑗>𝑖
∑ 𝑇

𝑗→𝑗+1
 ,  𝑖, 𝑗 ∈ 1,  2,  3{ } (22)

assuming that the sojourn time already spent in state is .𝑖 𝑡
𝑛,𝑖
0

The expected value, , and the quantiles of , , are given by,𝐸[𝑅𝑈𝐿(𝑘τ)] α − 𝑅𝑈𝐿(𝑘τ) 𝑞
α

𝑅𝑈𝐿(𝑘τ)[ ]

respectively:

𝐸[𝑅𝑈𝐿 𝑘τ( )] =  {
𝐸 𝑇

1→2[ ]−
0

𝑡
𝑛,𝑖
0

∫ 𝑡
1→2

•𝑓
𝑇

1→2

(𝑡
1→2

)𝑑𝑡
1→2

𝑅
𝑇

1→2

(𝑡
𝑛,𝑖

0)

⎧
⎪

⎨⎪
⎩

⎫
⎪

⎬⎪
⎭

+ 𝐸 𝑇
2→3[ ] + 𝐸 𝑇

3→4[ ] − 𝑘τ,                           (23)

𝑞
α

𝑅𝑈𝐿 𝑘τ( )[ ]:  
0

𝑞
α

𝑅𝑈𝐿 𝑘τ( )[ ]

∫ 𝑓
𝑅𝑈𝐿 𝑘τ( )

𝑡( )𝑑𝑡 = α (24)

where is the PDF of the random variable𝑓
𝑅𝑈𝐿 𝑘τ( )

𝑅𝑈𝐿  𝑘τ( ).

The definition of depends on the case under investigation. In details, in the setting described in𝑡
𝑛,𝑖
0

Section 3.1 with data only, we know that and ,𝑡
𝑛,1
0 = 𝑘τ 𝑡

𝑛,𝑖
0  ϵ [(𝑘τ − 𝑘

𝑛, 𝑖
τ), (𝑘τ − (𝑘

𝑛,𝑖
− 1)τ)]
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. In this case, and are interval estimates, whose lower and upper𝑖 = 2, 3 𝐸 𝑅𝑈𝐿(𝑘τ)[ ] 𝑞
α

𝑅𝑈𝐿(𝑘τ)[ ]

bounds are obtained by substituting with and (see Figure 3),𝑡
𝑛,𝑖
0 (𝑘τ − 𝑘

𝑛, 𝑖
τ) (𝑘τ − (𝑘

𝑛, 𝑖
− 1)τ)

respectively, in Equations (23) and (24).

Figure 3: for setting in Section 3.1.𝑡
𝑛,𝑖
0

With respect to the setting illustrated in Section 3.2, the sojourn time in state corresponds to the𝑖

difference between the crisp number and the triangular fuzzy number ,(𝑘τ − 𝑘
𝑛,𝑖−1

τ) 𝑡
~

𝑛,𝑖−1→𝑖

resulting in the possibility distribution (Aven et al., 2014):µ
𝑡
~

𝑛,𝑖

0 𝑡
𝑛,𝑖
0( ) 

µ
𝑡
~

𝑛,𝑖

0 (𝑡
𝑛,𝑖
0 ) = 𝑘τ− 𝑘

𝑛,𝑖−1
τ − 𝑡

𝑛,𝑖→𝑖+1( ), 𝑘τ− 𝑘
𝑛,𝑖−1

τ − 𝑡⏞
𝑛,𝑖→𝑖+1( ), (𝑘τ− 𝑘

𝑛,𝑖−1
τ− 𝑡

𝑛,𝑖→𝑖+1
)( ) (25)

which is shown in Figure 4.

Figure 4: for setting in Section 3.2.𝑡
𝑛,𝑖
0



18

Since the random variable depends on the sojourn time, as shown in Equation (22), it is𝑅𝑈𝐿(𝑘τ)

affected by the epistemic uncertainty on , and, thus, in the case considered it becomes a fuzzy𝑡
𝑛𝑖
0

number, described by a possibility distribution. Therefore, the expected value and the quantileα −

estimates of the fuzzy , according to the Zadeh extension principle, are fuzzy numbers too𝑅𝑈𝐿(𝑘τ)

(Zadeh, 1996; Aven et al., 2014). The lower bound, core and upper bound of the estimates of

and are obtained by combining Equation (25) with Equation (23) and𝐸 𝑅𝑈𝐿(𝑘τ)[ ] 𝑞
α

𝑅𝑈𝐿(𝑘τ)[ ]

Equation (24), respectively.

Finally, notice that if at inspection time the component is found in state 1 (i.e., no transition has𝑘τ

been observed), then and do not depend on .𝐸 𝑅𝑈𝐿(𝑘τ)[ ] 𝑞
α

𝑅𝑈𝐿(𝑘τ)[ ] 𝑡
𝑛,𝑖
0

5. CASE STUDY

In this Section, the settings described in Sections 3.1 and 3.2 and the RUL estimation procedure

discussed in Section 4 are applied to a simulated case study concerning the 4-states PS degradation

process described in Section 2.

5.1. Data Simulation

We have artificially generated degradation paths by Monte-Carlo (MC) sampling from the𝑁 = 100

Markov Model described in (Fleming, 2004), which assumes that the transition times are

exponentially distributed with scale parameters given in Table 1.λ
𝑖→𝑖+1

𝑖 λ
𝑖→𝑖+1

(𝑦−1)

1 4. 35×10−4

2 1. 79×10−4

3 1. 97×10−2

Table 1: Values of the scale parameter used to simulate the degradation process (Fleming, 2004).λ
𝑖→𝑖+1

Then, a right censoring mechanism has been applied to the gathered data, with .𝑇
𝑚

= 60 𝑦𝑒𝑎𝑟𝑠

This value is taken from (Di Maio et al., 2015) and considers that typically NPPs have a life time of

40 years. We consider that the system is periodically inspected with period .τ = 5 𝑦𝑒𝑎𝑟𝑠
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The case study dataset is summarized in Table 2a, which reports for every state (first column) the𝑖

corresponding number of components that have entered in state (second column), and the number𝑖

of components which are found in state at inspection (third column).𝑖 𝑘
𝑛,𝑖

= 𝑀
𝑛

𝑖
Number of components

entered in state 𝑖
Number of components found in state at𝑖

inspection 𝑀
𝑛

1 100 94

2 6 4

3 2 1

4 1 1

Table 2a: Case study dataset.

To better understand the case study dataset, the degradation paths of the six components that entered

a state are summarized in Table 2b, where the first column reports the component,𝑖 > 1 𝑛𝑡ℎ

whereas the other three columns report the values of , respectively, as defined in𝑘
𝑛,𝑖

,  𝑖 = 2, 3, 4

Subsection 2.1.

𝑛 𝑘
𝑛
, 2 𝑘

𝑛,3
𝑘

𝑛,4

4 4 - -
13 11 - -

17 11 - -

41 8 9 -
74 3 - -
91 1 10 12

Table 2b: Case study dataset.

Obviously, in this simulated case study we do not have real expert judgments. Nevertheless, for a

better understanding of how the expert knowledge can influence the estimation of the unknown

parameters, we investigate three different settings relating to as many risk attitudes of the expert.

Namely, we consider three different types of possibility distributions correspondingµ
𝑡
~

𝑛,𝑖→𝑖+1

(𝑡
𝑛,𝑖→𝑖+1

)
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to the information about the transition time retrievable from a moderately risk-averse (Figure 5),

risk- averse (Figure 6), and risk- prone (Figure 7) expert. For brevity, these three settings will be

referred to as cases and , respectively, whereas the MLE setting will be referred to as .𝐶
1
,  𝐶

2
𝐶

3
𝐶

0

Figure 5: Example of possibility distribution of case (moderately risk-averse).𝐶
1

Figure 6: Example of possibility distribution of case (risk-averse).𝐶
2
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Figure 7: Example of possibility distribution of case (risk-prone).𝐶
3

In the first case, the expert does not commit her/him-self and, thus, does not reduce the support of

the possibility distribution; she/he only gives the fully plausible value of , within the interval𝑡
𝑛,𝑖→𝑖+1

, but closer to its lower bound; namely, he/she sets𝑘
𝑛,𝑖+1

− 1( )τ;  𝑘
𝑛,𝑖+1

τ[ ]
, where (i.e., the time elapsed from the first𝑡⏞

𝑛,𝑖→𝑖+1
= 0. 667 + 𝑡

𝑛,𝑖

0
𝑡

𝑛,𝑖

0
= (𝑘

𝑛, 𝑖+1
− 1)τ − 𝑘

𝑛,𝑖
τ

inspection time in which the component has been found in state and the last one). In the second𝑖

case, the expert is more conservative, i.e., he/she feels that the transition surely lies in the interval

, with core . Finally, the case in Figure 7𝑘
𝑛,𝑖+1

− 1( )τ; (𝑘
𝑛,𝑖+1

τ − 2 )[ ] 𝑡⏞
𝑛,𝑖→𝑖+1

= 0. 667 + 𝑡
𝑛,𝑖

0

refers to an expert that feels confident on the system and, thus, states that the transition surely

occurred in the interval , the fully plausible value𝑘
𝑛,𝑖+1

− 1( )τ + 2);  𝑘
𝑛,𝑖+1

τ [ ]
.𝑡⏞

𝑛,𝑖→𝑖+1
= 2. 667 + 𝑡

𝑛,𝑖

0

5.2. Parameters Estimation results

Tables 3-6 report the results obtained for cases , respectively, which are summarized by the𝐶
0

− 𝐶
3

expected value, , the variance, , the median, and the interval𝐸[𝑇
𝑖→𝑖+1

] 𝑉𝑎𝑟[𝑇
𝑖→𝑖+1

] 𝑞
0.5

[𝑇
𝑖→𝑖+1

]

which covers of the values of the random variables ,𝐼 = 𝑞
0.05

[𝑇
𝑖→𝑖+1

]; 𝑞
0.95

[𝑇
𝑖→𝑖+1

][ ] 90 % 𝑇
𝑖→𝑖+1

, obeying Weibull distributions.𝑖 = 1, 2, 3
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MLE estimation

𝑖 ϑ
^

𝑀𝐿𝐸
𝑉𝑎𝑟 𝑇

𝑖→𝑖+1{ } 𝐸 𝑇
𝑖→𝑖+1{ } 𝑞

0.5
𝑇

𝑖→𝑖+1{ } I

1
1.494e+03α

1
=

0.866β
1

=
3. 466e+06 1.607e+03 979.22 [50.15; 5319.51]

2
=104.41α

2

=0.65β
2

5.097e+04 142.13 59.52 [1.07; 561.88]

3
=21.29α

3

=1.44β
3

185.04 19.32 16.52 [2.71; 45.62]

Table 3: Results for case .𝐶
0

FEM estimation

𝑖 ϑ
^

𝐹𝐸𝑀
𝑉𝑎𝑟 𝑇

𝑖→𝑖+1{ } 𝐸 𝑇
𝑖→𝑖+1{ } 𝑞

0.5
𝑇

𝑖→𝑖+1{ } I

1
1.671e+03α

1
=

0.837β
1

=
4.858e+07 1.835e+03 1078.75 [47.48; 6239.39]

2
=98.26α

2

=0.68β
2

3.698e+04 127.60 57.41 [1.28; 484.85]

3
=21.57α

3

=1.32β
3

229.89 19.85 16.34 [2.23; 49.47]

Table 4: Results for case .𝐶
1

The parameters values estimated in case are similar to those in case . This is due to the fact𝐶
1

𝐶
0

that the simulated dataset is composed by 94% of components that have never experienced any

transition during the mission time i.e., they are still in state 1 at (Table 2). For these𝑡 = 𝑇
𝑚

components, the expert opinion on state transition times is not exploited. Moreover, in case , the𝐶
1

expert gives a possibility distribution whose support is coincident with the interval between

successive inspections, which corresponds to the interval-censored data considered in case .𝐶
0
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FEM estimation

𝑖 ϑ
^

𝐹𝐸𝑀
𝑉𝑎𝑟 𝑇

𝑖→𝑖+1{ } 𝐸 𝑇
𝑖→𝑖+1{ } 𝑞

0.5
𝑇

𝑖→𝑖+1{ } I

1
2.134e+03α

1
=

0.779β
1

=
1.020e+06 2.464e+03 1334.30 [47.71; 8753.99]

2
=108.69α

2

=0.61β
2

7.018e+04 156.91 60.18 [0.92; 640.69]

3
=21.90α

3

=1.20β
3

293.80 20.57 16.16 [1.87; 54.36]

Table 5: Results for case .𝐶
2

FEM estimation

𝑖 ϑ
^

𝐹𝐸𝑀
𝑉𝑎𝑟 𝑇

𝑖→𝑖+1{ } 𝐸 𝑇
𝑖→𝑖+1{ } 𝑞

0.5
𝑇

𝑖→𝑖+1{ } I

1
1.011e+03α

1
=

0.985β
1

=
1.066e+07 1.017e+03 697.54 [50.66; 3085.01]

2
=77.92α

2

=0.89β
2

8.427e+03 82.16 51.78 [2.86; 265.42]

3
=20.73α

3

=1.64β
3

133.69 18.54 16.59 [3.38; 40.21]

Table 6: Results for case .𝐶
3

The impact of including the expert information is appreciable when case is compared with cases𝐶
0

and , where the supports of the possibility distributions on the transition times do not coincide 𝐶
2

𝐶
3

with the whole interval . We consider only the transitions observed before𝑘
𝑛,𝑖+1

− 1( )τ; 𝑘
𝑛,𝑖+1

τ[ ]
, so that the parameter estimation is influenced by transition times for which the𝑇

𝑚
𝑡

𝑛,𝑖→𝑖+1
< 60

expert expresses his/her opinion. The influence of the expert risk-attitude can be appreciated when

comparing the estimated parameters . In particular, for the first and the second transition, andβ β
1

β
2
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are smaller than 1, which means decreasing estimated transition rate over time, but, in case ,𝐶
3

β
1

and are larger than the estimates of cases and .β
2

𝐶
0

𝐶
2

In order to clarify the influence of the expert risk-attitude on transition rates, we have computed λ
𝐶0

for case (i.e., the expert is moderately risk-averse), for case (i.e., the expert is𝐶
0

λ
𝐶2

𝐶
2

risk-averse), and for case (i.e, the expert is moderately risk-prone), according to theλ
𝐶3

𝐶
3

expression for given in Equation (4). The behaviours over time of the estimated transition ratesλ
𝑖

for the transition from state 1 to state 2 are shown in Figure 8: in the initial part of the time axis the

transition rate related to the risk-prone expert is smaller than those of the moderately risk-averse and

risk-averse experts.

Figure 8: Transition rates for transition from state 1 to state 2, with for Case , for Case and forλ
𝐶

0

𝐶
0

λ
𝐶

2

𝐶
2

λ
𝐶

3

Case .𝐶
3

Similarly, the rate for the third transition estimated in case is initially larger than those in case𝐶
3

𝐶
0

and as shown in Figure 9..𝐶
2
,
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Figure 9: Transition rates , and for transition from state 3 to state.λ
𝐶0

λ
𝐶2

λ
𝐶3

Figure 10 shows the estimated reliability function for the different scenarios, which has been derived

by the Monte Carlo (MC) approach summarized in Appendix A.

Figure 10: Estimated reliability function.

5.3.RUL estimation results

In this Section, we report the results of the estimation of and , by𝐸 𝑅𝑈𝐿 𝑘τ( )[ ] 𝑞
α

𝑅𝑈𝐿 𝑘τ( )[ ]

applying the procedure described in Section 4.

estimation5. 3. 1 𝐸 𝑅𝑈𝐿(𝑘τ)[ ]

The expected value of the random variable has been estimated according𝐸 𝑅𝑈𝐿( 𝑘τ( ))[ ] 𝑅𝑈𝐿(𝑘τ)

to Equation (23) at each inspection time , , assuming that at this time instant the𝑘τ 𝑘 = 1…𝑀
𝑛

component can be found in state 1, state 2 or state 3.

Figures 11-16 show the evolution of over . We firstly compare the results obtained𝐸 𝑅𝑈𝐿(𝑘τ)[ ] 𝑘τ

in case with those obtained in case , as their estimated model parameters are similar to each𝐶
0

𝐶
1

other. Then, RUL estimates in case are compared to those of cases and . For visualization,𝐶
0

𝐶
2

𝐶
3

the axes of these Figures have different scales; yet, for states the is divided𝑖 = 2,  3 𝐸 𝑅𝑈𝐿(𝑘τ)[ ]

into two plots: a) where and b) where . The estimates of𝑘τ = 5, …, 30{ } 𝑘τ = 35, …, 60{ }

, given that the PS is in state 1, are reported in Figure 11, both for case and for case𝐸 𝑅𝑈𝐿(𝑘τ)[ ] 𝐶
1

Since no transition has been observed when the component is found in state 1, then the𝐶
0
.  
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estimates do not depend on and are not affected by uncertainty. The difference between the𝑡
𝑛,𝑖
0

estimated RULs is only due to the different values of .ϑ

Figure 11: Results for Cases and ; state 1; E[RUL] and Inspection time in years.𝐶
0

𝐶
1

In Figures 12-13, the estimates of for states 2 and 3 are shown, respectively, which are𝐸 𝑅𝑈𝐿(𝑘τ)[ ]

intervals for case and triangular possibility distributions for case . From the comparison of𝐶
0

𝐶
1

these Figures, we can notice that in case the uncertainty on is always smaller𝐶
1

𝐸 𝑅𝑈𝐿( 𝑘τ( ))[ ]

than that in case , at any inspection time. This is due to the fact that the expert statements𝐶
0

introduce an additional information on the system behaviour, which allows better specifying the

value of in the interval containing its unknown value. This result highlights the𝐸 𝑅𝑈𝐿(𝑘τ)[ ]

contribution of the method here proposed to exploit any source of information that can corroborate

data.

Figure 12: Results for cases and ; state 2; E[RUL] and Inspection time in years.𝐶
0

𝐶
1
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Figure 13: Results for cases and ; state 3; E[RUL] and Inspection time in years.𝐶
0

𝐶
1

With respect to the comparison of case to cases and , Figure 14 compares the𝐶
0

𝐶
2

𝐶
3

𝐸 𝑅𝑈𝐿(𝑘τ)[ ]

estimates when the component is in state 1, which do not depend on . The estimates are not𝑡
𝑛,𝑖
0

affected by uncertainty, as introduced previously, and the ones of case are always smaller than𝐶
0

those of case and larger than those of case . This difference reflects the different expected𝐶
2

𝐶
3

value estimated in each case, in fact the expected value of case is larger than the others, while the𝐶
2

one of case is smaller.𝐶
3

Figure 14: Results for cases and ; state 1; E[RUL] and Inspection time in years.𝐶
0
,  𝐶

2
𝐶

3
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Figure 15 compares the results of case to those of cases and , when the PS is found in state𝐶
0

𝐶
2

𝐶
3

2. We can note that intervals estimated in case never contain the fuzzy estimates of cases and𝐶
0

𝐶
2

.𝐶
3

Figure 15: Results for cases and ; state 2; E[RUL] and Inspection time in years.𝐶
0
,  𝐶

2
𝐶

3

In particular, the estimates in case are always smaller than the corresponding ones of case ,𝐶
3

𝐶
0

which are smaller than those of case . This is due to the fact that the estimates of ,𝐶
2

𝐸[𝑇
𝑖→𝑖+1

]

, are larger in case than in case , while they are larger in case than in case .𝑖 = 1,  2,  3 𝐶
2

𝐶
0

𝐶
0

𝐶
3

Figure 16 shows the RUL estimates in cases and assuming that the component is found in𝐶
0
, 𝐶

2
𝐶

3

state 3. In this case, the estimates are closer to each other since the corresponding estimated

parameters for the third transition are similar to each other, as underlined previously.ϑ

Figure 16: Results for cases and ; state 3; E[RUL] and Inspection time in years.𝐶
0
,  𝐶

2
𝐶

3
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estimation5. 3. 2 𝑞
α

𝑅𝑈𝐿(𝑘τ)[ ]

“The interval containing of the values of the random variable , Equation (24), has beenα% 𝑅𝑈𝐿(𝑘τ)

estimated through MC simulation (see Appendix B), at each inspection time , ,𝑘τ 𝑘 = 1…𝑀
𝑛

assuming that at this time instant the component can be found in state 1, state 2 or state 3.

Figures 17-22 show the evolution over and we report the estimates for .𝑞
α

𝑅𝑈𝐿(𝑘τ)[ ] 𝑘τ α = 0. 1

We firstly compare the results obtained in case with those obtained in case , as their estimated𝐶
0

𝐶
1

model parameters are similar to each other. Then RUL estimates in Case are compared to those𝐶
0

of cases and . For visualization, the axes of these Figures have different scales; yet, for states𝐶
2

𝐶
3

the is divided into two plots: a) where and b) where𝑖 = 2, 3 𝑞
α

𝑅𝑈𝐿(𝑘τ)[ ] 𝑘τ = 5, …, 30{ }

. The estimates of , given that the PS is in state 1, are reported in𝑘τ = 35, …, 60{ } 𝑞
α

𝑅𝑈𝐿(𝑘τ)[ ] 

Figure 15, both for case and for case . Since no transition has been observed when the𝐶
1

𝐶
0

component is found in state 1, then the estimates do not depend on and are not affected by𝑡
𝑛,𝑖
0

uncertainty.

Figure 17: Results for case , state 1; and Inspection time in years.𝐶
0 

,   𝐶
1

𝑞
0.1

𝑅𝑈𝐿[ ] 

In Figures 18-19, the estimates are shown for the states 2 and 3, respectively, which are intervals for

case and traingular possibility distributions for case . From the comparison of these Figures,𝐶
0

𝐶
1

we can notice that in case the uncertainty on is always smaller than that in case ,𝐶
1

𝑞
α

𝑅𝑈𝐿(𝑘τ)[ ] 𝐶
0

at any inspection time. This is thanks to the additional information given by the expert and exploited
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in the estimation, which allows better specifying the value of in the interval𝑞
α

𝑅𝑈𝐿(𝑘τ)[ ]

containing its unknown value.

Figure 18: Results for case , state 2; and Inspection time in years.𝐶
0 

,   𝐶
1

𝑞
0.1

𝑅𝑈𝐿[ ] 

Figure 19: Results for case , state 3; and Inspection time in years.𝐶
0 

,   𝐶
1

𝑞
0.1

𝑅𝑈𝐿[ ] 
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With respect to the comparison of case to cases and , Figure 20 compares the𝐶
0 

  𝐶
2

 𝐶
3

estimates when the component is in state 1. The estimates of case are larger than𝑞
α

𝑅𝑈𝐿(𝑘τ)[ ] 𝐶
2

the others, throughout the time range, reflecting the larger expected values estimated for the

transition times, in this case. Whereas, the estimates of case are smaller than the others, over all𝐶
3

the time range, reflecting the smaller expected values estimated for the transition times, in this case.

Figure 21: Results for case and , state 2; and Inspection time in years.𝐶
0 

,   𝐶
2

 𝐶
3

𝑞
0.1

𝑅𝑈𝐿[ ] 

Figure 22: Results for case and state 3; and Inspection time in years.𝐶
0 

,   𝐶
2

 𝐶
3
, 𝑞

0.1
𝑅𝑈𝐿[ ] 

Figures 21 compares the results of case to those of cases and , in case the PS is found in𝐶
0

𝐶
2

𝐶
3

state 2. We can note that, initially, the intervals estimated in case almost contain the fuzzy𝐶
0

estimates of case and are very close to those of case . Then, after years, the estimates𝐶
2

𝐶
3

𝑘τ = 25

of case are smaller and differ from the others. This is due to the fact that initially the influence of𝐶
3
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the expert opinion is more relevant: in fact the estimates of case , in which the expert is𝐶
3

risk-prone, are larger than those of cases and . Figure 22 shows the RUL estimates in cases𝐶
0

𝐶
2

𝐶
0

and assuming that the component is found in state 3. In this case, the estimates are closer to each𝐶
3
,

other and sometimes the intervals estimates of case contain the possibility distributions of cases𝐶
0

and . As for Figure 21, initially the estimates of case are larger than those of cases and𝐶
2

𝐶
3

𝐶
3

𝐶
2

, according to the expert opinion. Furthermore, the estimates of cases and are close to each𝐶
0

𝐶
2

𝐶
3

other since the behavior described by the model parameters, estimated in these two cases, are

similar.

Overall, for all the cases considered, the estimated and increase𝐸 𝑅𝑈𝐿(𝑘τ)[ ] 𝑞
α

𝑅𝑈𝐿(𝑘τ)[ ]

proportionally to when the component is in state or , independently on the case considered,𝑘τ 1 2

and decrease when the component is in state . This is due to the fact that for is less than3 𝑖 = 1, 2 β
𝑖

1, which corresponds to a decreasing failure rate (Thoman et al., 1969). Consequently, for

increasing value of , and are increasing over time. On the other hand,𝑘τ 𝐸 𝑅𝑈𝐿(𝑘τ)[ ] 𝑞
α

𝑅𝑈𝐿(𝑘τ)[ ]

for state , is larger than 1, which corresponds to an increasing failure rate, and so, for𝑖 = 3 β
3

increasing values of , the expected value and the quantile are𝑘τ 𝐸 𝑅𝑈𝐿(𝑘τ)[ ] 𝑞
α

𝑅𝑈𝐿(𝑘τ)[ ]

decreasing over time.

6. Conclusions

In this work, we have developed a method based on the FEM algorithm to estimate the parameters

of a MS degradation model. The method allows integrating field data from inspection outcomes

with additional information about the state transition times from maintenance operators. Such

additional, imprecise information has been represented by possibility distributions. Based on the

MS model with estimated parameters, a procedure for predicting the RUL has been developed. The

proposed method has been applied to a case study concerning the degradation of pipe welds in the

coolant system of a PWR NPP. We have also investigated how results change when the expert

knowledge is not employed and only inspection outcomes are considered. The results have shown

that the combination of field data with expert knowledge allows reducing the uncertainty in

degradation estimation. Finally, the proposed methodology can be easily extended to other

industrial reliability problems, where information from expert is available to supplement field data.
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APPENDIX A

To estimate the reliability function in Figure 10, we have used the following procedure based on

Monte Carlo simulation:

Algorithm A:

While , where is the number of desired Monte Carlo draws, do:𝑠𝑖𝑚≤𝑀 𝑀 = 100000

● Sample sojourn time in state 1: 𝑡
1
𝑠𝑖𝑚~𝑓

𝑇
1→2

𝑡
1→2

,  α
1
,  β

1( )
● …

● Sample sojourn time in state 3: 𝑡
3
𝑠𝑖𝑚~𝑓

𝑇
3→4

𝑡
3→4

,  α
3
,  β

4( )

The quantity is a draw from the failure time random variable𝑡𝑠𝑖𝑚 =
𝑖=1

3

∑ 𝑡
𝑖
𝑠𝑖𝑚 𝑇𝑓𝑎𝑖𝑙𝑢𝑟𝑒 =

𝑖=1

3

∑ 𝑇
𝑖→𝑖+1

.

Finally, using draws firstly, we have estimated the CDF of the𝑡𝑠𝑖𝑚,  𝑠𝑖𝑚 = 1, …, 𝑀, 𝐹𝑓𝑎𝑖𝑙𝑢𝑟𝑒  

random variable with the MATLAB® routine ecdf, then, the reliability function has been𝑇𝑓𝑎𝑖𝑙𝑢𝑟𝑒

estimated as 𝑅𝑓𝑎𝑖𝑙𝑢𝑟𝑒 = 1 − 𝐹𝑓𝑎𝑖𝑙𝑢𝑟𝑒.
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APPENDIX B
To estimate quantile we propose the following procedure based on Monte Carlo𝑞

α
𝑅𝑈𝐿(𝑘τ)[ ]

simulation:

Algorithm 2:

is the number of Monte Carlo samples𝑀 = 100000

While :𝑠𝑖𝑚 ≤ 𝑀

● Sample the residual sojourn time in state provided that the component has already𝑖

sojourned in this state for units of time: ,𝑡
𝑛,𝑖
0 𝑡

𝑖
𝑠𝑖𝑚|𝑡

𝑛,𝑖
0 ~𝑓

𝑇𝑖→𝑖+1
(𝑡

𝑖→𝑖+1
|𝑡

𝑛,𝑖
0 , α

𝑖
, β

𝑖
)

● For 𝑗 = 𝑖 + 1 𝑡𝑜 3

o Sample sojourn time in state j: 𝑡
𝑖+1
𝑠𝑖𝑚~𝑓

𝑇
𝑗→𝑗+1

𝑡
𝑗→𝑗+1

,  α
𝑗
,  β

𝑗( )
● End for

is a draw from random variable𝑡
𝑅𝑈𝐿(𝑘τ)
𝑠𝑖𝑚 = 𝑡

𝑖
𝑠𝑖𝑚|𝑡

𝑛,𝑖
0 + 𝑡

𝑖+1
𝑠𝑖𝑚 + … + 𝑡

3
𝑠𝑖𝑚 − 𝑡

𝑛,𝑖
0 𝑅𝑈𝐿 𝑘τ( ).

End while

Finally, quantile has been estimated from the collection of samples with the𝑞
α

𝑅𝑈𝐿(𝑘τ)[ ] 𝑡
𝑅𝑈𝐿(𝑘τ)
𝑠𝑖𝑚

MATLAB® routine quantile.”


