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Availability Assessment of Oil and Gas Processing Plants 

Operating under Dynamic Arctic Weather Conditions 

Abstract  

We consider the assessment of the availability of oil and gas processing facilities operating 

under Arctic conditions. The novelty of the work lies in modelling the time-dependent effects 

of environmental conditions on the components failure and repair rates. This is done by 

introducing weather-dependent multiplicative factors, which can be estimated by expert 

judgements given the scarce data available from Arctic offshore operations. System availability 

is assessed considering the equivalent age of the components to account for the impacts of 

harsh operating conditions on component life history and maintenance duration. 

 The application of the model by direct Monte Carlo simulation is illustrated on an oil 

processing train operating in Arctic offshore. A scheduled preventive maintenance task is 

considered to cope with the potential reductions in system availability under harsh operating 

conditions. 

Keywords: Dynamic weather conditions, failure rate, repair rate, equivalent age, preventive 

maintenance, availability, Monte Carlo simulation, oil and gas, Arctic offshore. 

Acronyms  

ALM Accelerated Life Model 

ALT Accelerated Life Test 

AR Auto-Regressive 

ARMA Auto-Regressive Moving Average 

CM Corrective Maintenance 

CDF Cumulative Distribution Function 

MC Monte Carlo 

MDT Mean Total Downtime 

MTTF Mean Time to Failure 

NCS Norwegian Continental Shelf 

O&G Oil and Gas 

PDF Probability Density Function 

PHM Proportional Hazard Model 

PM Preventive Maintenance 

RAM Reliability, Availability, and Maintainability 

TTF Time to Failure 

TTFF Time to First Failure 

TTR Time to Repair 

WCT Wind Chill Temperature 

WIL Weather Intensity Level 

Notation 
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𝐴(𝜏)̅̅ ̅̅ ̅̅   System mean availability under dynamic weather conditions over the 

time interval [0, 𝜏] 
𝐴𝑔𝑒𝑖  Equivalent age of component 𝑖 prior to 𝑡0,𝑖, when it has started its 

current state 

𝐴𝑅(𝑃)  Auto-regressive process of order 𝑃 

𝐷𝑇𝐿0  Total downtime in the base area, including active repair time 𝑇𝑇𝑅𝐿0 
and waiting downtime 𝑊𝐷𝑇𝐿0 

𝐷𝑇𝐿𝑗  Total downtime of a component that undergoes CM actions under 

static weather conditions with WIL 𝐿𝑗 , including active repair time 

𝑇𝑇𝑅𝐿𝑗 and waiting downtime 𝑊𝐷𝑇𝐿𝑗 = 𝑊𝐷𝑇𝐿0 
𝐹𝑖(𝑡𝑖

∗′ − 𝑡∗|𝑡∗)  Failure probability of component 𝑖 at 𝑡𝑖
∗′, conditional on that it has 

survived until 𝑡∗, under dynamic weather conditions 

𝑓𝐿𝑗(𝑡)  Probability density function of a component TTF operating under 

static weather conditions at the WIL 𝐿𝑗 
𝐹𝐿𝑗(𝑡)  Failure distribution of a component operating under static weather 

conditions at WIL 𝐿𝑗 , with 𝐿0 corresponding to normal-climate 

conditions 

𝐿𝑗  Weather intensity level 𝑗; 𝑗 = 0,1, . . , 𝐽. The whole range of the 

weather conditions is divided into 𝐽 + 1 levels, with 𝐿0 being he 

normal weather intensity level. 

𝐿𝐾  Weather intensity level at any time 𝑡 belonging to the 𝐾th interval 

[𝑡𝐾−1
′ , 𝑡𝐾

′  ) partitioning the time horizon, such that 𝐿𝐾𝜖{𝐿
𝑗}; 𝑗 =

0, … , 𝐽 
𝑀𝐷𝑇𝑖,𝐿0  Mean total downtime in the base area for component 𝑖 

𝑛𝑆  Total number of simulation runs 

𝐾  Index of time intervals [𝑡𝐾−1
′ , 𝑡𝐾

′  ); 𝐾 = 1,… ,𝑁; 𝑡0
′ = 0, partitioning 

the time horizon, during which the weather conditions remain 

unchanged at an intensity level of 𝐿𝐾. In this study, the time interval 

length is taken to be equal to a day. 

𝑅(𝑡)  Component reliability at time 𝑡 ∈ [𝑡𝐾−1
′ , 𝑡𝐾

′  ) 
𝑅𝐿𝐾(∙)  Reliability of a component operating under static weather conditions 

at WIL 𝐿𝑗  
𝑆𝐿𝑗  State of the system at WIL 𝐿𝑗, 𝑗 = 0,… , 𝐽; 𝑆𝐿𝑗 = 1 and 𝑆𝐿𝑗 = 0 refer 

to the functioning and faulty states, respectively.   

𝑆𝑇(𝐾)  Seasonality term of the min temperature time-series at the 𝐾th day 

𝑆𝑊(𝐾)  Seasonality term of the wind speed time-series at the 𝐾th day 

𝑡0,𝑖  Time at which component 𝑖 either has started its current functioning 

state or it has entered the current faulty state 

𝑡𝑒,𝐾−1  Time equivalent to 𝑡𝐾−1
′  

𝑡𝑒𝑛𝑑  Time horizon and operation end time, which is equal to 𝑡𝑁
′  

𝑡𝑢𝑐  Time point at which the component fails during its 𝑐th life cycle 

𝑡𝑑𝑐   Time point at which the component is restored back to its functioning 

state and starts its (𝑐 + 1)th life cycle 

𝑇𝐸𝑀𝑃(𝐾)  Minimum temperature at the 𝐾th day, in °C 

𝑇𝑇𝐹𝐿𝑗  TTF of a component operating under static weather conditions at the 

WIL 𝐿𝑗 , 𝑗 = 0, … , 𝐽 with 𝑗 = 0 being referred to the normal weather 

conditions 

𝑇𝑇𝑅𝐿𝑗  TTR of a component operating under static weather conditions at the 

WIL 𝐿𝑗 , 𝑗 = 0, … , 𝐽 with 𝑗 = 0 being referred to the normal weather 
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conditions 

𝑢𝑝𝑡𝑖𝑚𝑒𝑐  Length of the time interval [𝑡𝑑𝑐−1 , 𝑡𝑢𝑐] during which a component has 

been functioning during its 𝑐th life cycle 

𝑢𝑝𝑡𝑖𝑚𝑒𝑒,𝑐  Equivalent time of 𝑢𝑝𝑡𝑖𝑚𝑒𝑐 

𝑊𝐶𝑇𝐾  Wind chill temperature at plant location at 𝑡 ∈ [𝑡𝐾−1
′ , 𝑡𝐾

′  ) 
𝑊𝐷𝑇𝐿0  Waiting downtime before commencing CM tasks in the base area, 

which includes the time required to shut down the unit, issue the work 

orders, wait for the spare parts, and start up the unit after repair. 

𝑊𝐸  Weather element referring to either minimum daily air temperature or 

maximum daily wind speed, i.e., 𝑊𝐸 ∈ {𝑇𝐸𝑀𝑃,𝑊𝐼𝑁𝐷′} 
𝑊𝐼𝑁𝐷(𝐾)  Maximum wind speed during 𝐾 in km/hr 

𝑊𝐼𝑁𝐷′(𝑡)  Box-Cox transformed wind speed at the 𝐾th day 

𝑋  The factor by which the weather-dependent factor 𝛿𝐿𝐾,𝑖 changes due 

to modifications to plant design 

𝑌  The factor by which the weather-dependent factor 휀𝐿𝐾,𝑖 changes due to 

modifications to the comfort of maintenance crew, or modifications to 

the plant design resulting in changes in component active repair time 

𝛽𝐿0  Weibull shape parameter, estimated using the life data collected in the 

base area (i.e., normal weather conditions) 

∆𝑡𝐾
′ = 𝑡𝐾

′ − 𝑡𝐾−1
′   Length of the time interval [𝑡𝐾−1

′ , 𝑡𝐾
′  ); 𝐾 = 1,… ,𝑁, partitioning the 

time horizon; during each time interval the weather conditions are 

assumed constant 

𝛿𝐿𝑗  Weather-dependent multiplicative factor corresponding to the WIL 𝐿𝑗, 
𝑗 = 0,… , 𝐽 with 𝛿𝐿0 = 1, which accounts for the reductions in TTFs. 

𝛿𝐿𝐾  Weather-dependent multiplicative factor corresponding to the WIL 

𝐿𝐾 = 𝐿
𝑗 , 𝑗 = 0, … , 𝐽 at the 𝐾th time interval 𝐾 = 1,…𝑁, which 

accounts for the reductions in TTFs 

휀𝐿𝑗  Weather-dependent multiplicative factor corresponding to the WIL 𝐿𝑗, 
𝑗 = 0,… , 𝐽 at the 𝐾th time interval 𝐾 = 1,…𝑁, which accounts for 

the rises in TTRs 

휀𝐿𝐾  Weather-dependent multiplicative factor corresponding to the WIL 

𝐿𝐾 = 𝐿
𝑗 , 𝑗 = 0, … , 𝐽 at the 𝐾th time interval 𝐾 = 1,…𝑁, which 

accounts for the rises in TTRs 

휀
𝐿𝑗
∗   Modified weather-dependent multiplicative factor corresponding to 

the WIL of 𝐿𝑗, 𝑗 = 0,… , 𝐽,, which accounts for the rises in total 

downtimes 

휀𝐿𝐾
∗   Modified weather-dependent multiplicative factor corresponding to 

the WIL of 𝐿𝐾 = 𝐿
𝑗, 𝑗 = 0,… , 𝐽, which accounts for the rises in total 

downtimes 

휁𝑇  Realisation of the final residuals of temperature time-series data, 

sampled from the standard normal distribution  

휁𝑊  Realisation of the final residuals of wind speed time-series data, 

sampled from standard normal distribution  

𝜆𝐿𝑗(𝑡)  Hazard rate of the component operating under static weather 

conditions at the WIL 𝐿𝑗 , 𝑗 = 0, … , 𝐽 , with 𝑗 = 0 being referred to the 

normal weather conditions 

𝜆𝐿𝐾(𝑡)  Hazard rate of a component at 𝑡 ∈ [𝑡𝐾−1
′ , 𝑡𝐾

′  )  

𝜆(𝑡)  Component hazard rate at 𝑡 ∈ [𝑡𝐾−1
′ , 𝑡𝐾

′  ) considering operation under 

dynamic weather conditions 
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µ𝐿𝑗  Repair rate of a component, considering the CM tasks are performed 

under static weather conditions at the WIL 𝐿𝑗 , 𝑗 = 0,… , 𝐽, with 𝑗 = 0 

being referred to the normal weather conditions 

µ𝐿𝐾(∙)  Component repair rate at 𝑡 ∈ [𝑡𝐾−1
′ , 𝑡𝐾

′  ) 

µ(𝑡)  Component repair rate at time 𝑡 ∈ [𝑡𝐾−1
′ , 𝑡𝐾

′  ), considering the CM 

tasks are performed under dynamic weather conditions 

𝜎𝑇(𝐾)  Seasonally timed-dependent standard deviation of the temperature 

data at the 𝐾th day 

𝜎𝑊(𝐾)  Seasonally timed-dependent standard deviation of the temperature 

data at the 𝐾th day 

𝜏𝑃𝑀  PM interval in years 

𝜓𝑇(𝐾)  Residual process of the air temperature time-series at the 𝐾th day 

𝜓𝑊(𝐾)  Residual process of the wind speed time-series at the 𝐾th day 

𝜔  Box-Cox transformation coefficient 

𝜖𝑇  Final residuals of temperature time-series, which follow a standard 

normal distribution 

𝜖𝑊  Final residuals of wind speed time-series, which follow a standard 

normal distribution 

 

1 Introduction 

Reliability, Availability and Maintainability (RAM) analyses are at the basis of informed 

maintenance decision-making and, thus, are essential for the management of profitable and safe 

production plants and assets. In this work, we are interested in Arctic Oil and Gas (O&G) 

plants, where the extreme weather conditions not only demand addressing peculiar technical 

issues in design and construction, but also greatly challenge maintenance engineering, as the 

harsh environment renders it difficult to perform labour actions, with consequent large 

downtimes and business interruptions (Gudmestad and Karunakaran, 2012; Homlong et al., 

2012; Løset et al., 1999; Naseri and Barabady, 2013) and affects the degradation processes, and 

therefore the reliability, of components and systems. For these reasons, it is fundamental that 

RAM analyses of Arctic O&G plants give due account to the influence of the environmental 

and operational parameters (e.g., fluid properties for engines, turbines, compressors, etc.) on 

the Time to Failure (TTF) (Jardine et al., 1987) and Time to Repair (TTR) distributions of 

components and systems. 

To do this, different approaches have been proposed in the literature. Among them, the 

Accelerated Life Models (ALMs) and the Proportional Hazard Models (PHMs) have proven 

effective (Doyen and Gaudoin, 2004). Both approaches consider a baseline probability model 

describing the evolution of the degradation process in normal conditions and, then, introduce 

covariates on the degradation process to account for conditioning aspects of the component life, 

environment, loading, etc. The difference between ALMs and PHMs lies in the modelling of 

the dependence of the aging process on the covariates. While in PHMs the effects of covariates 

are modelled as multiplicative factors in the failure rates, ALMs model explicitly the operating 

environment impacts on TTFs (Ansell and Philipps, 1997; Dale, 1985; Jardine et al., 1987; 
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Kumar and Klefsjö, 1994; Martón et al., 2015; Martorell et al., 1999; Vesely and Wolford, 

1988).  

PHMs have been applied to the specific context of Arctic O&G operation (Artiba et al., 

2005; Gao et al., 2010) to characterise the impacts of influencing factors such as human factors, 

logistic delays and severe weather conditions on equipment reliability, maintainability and 

spare part provision plans. More generally, advanced PHMs have been proposed (Alvehag and 

Soder, 2008; Alvehag and Soder, 2011; Peng and Huang, 2007; Rocchetta et al., 2015; Tian et 

al., 2005) to analyse the hazard rate behaviour in the presence of dynamically evolving 

covariates, such as the weather conditions, including changes in wind speed, occurrence of 

storms and lightning events, etc. (Barabadi et al., 2011; Barabadi et al., 2014; Kayrbekova et 

al., 2011). Although these approaches seem attractive for their potential of providing more 

precise estimates of RAM, their application to practical Arctic offshore O&G case studies is 

still prevented from the lack of reliability and operating data for proper setting of the RAM 

models. In fact, although O&G facilities have been expanding into remote, severe-weather 

Arctic offshore regions for several years, detailed maintenance data on O&G facilities are 

available only in relation to normal-climate regions (Barabadi et al., 2015). These data cannot 

be used for RAM analyses of facilities in the Arctic area, as they are not representative of the 

effects of severe weather conditions, and their seasonality. Furthermore, the relationship 

between the hazard rate of components, such as pumps, turbines, pressure vessels, and valves, 

their operational parameters (e.g., fluid properties, fluid temperature, pressure, etc.) and the 

weather conditions typical of the Arctic region, such as very low temperatures, icing severity, 

etc. is unknown. 

The situation has led to the development of pragmatic maintenance models fed by either 

qualitative information retrievable from experts or physical knowledge coming from the 

scientific literature. For example, qualitative information is used to directly modify the Mean 

Time to Failure (MTTF) of components for electrical production plant components (Baraldi et 

al., 2011; Baraldi et al., 2009) and of mechanical equipment units operating in an Arctic 

offshore oil processing train (Naseri and Barabady, 2015). These works generalize the practical 

approach proposed in (Department of Defense, 1991) by putting emphasis on the treatment of 

uncertainty and imprecision related to the information sources used to estimate the parameters 

of the models, but they do not account for the accumulated effects of the covariates on the 

equipment failure behaviour. 

To overcome this limitation, the concept of effective age, also called virtual age, has 

been introduced in (Kijima, 1989) and adopted by several works (e.g., (Baraldi et al., 2013; 

Martorell et al., 1999; XiaoFei and Min, 2014)). The underlying idea is that, by analogy with 

what happens with human beings, two similar components (i.e., of the same production lot) 

with the same calendar age can have different performance if they operate in different 

environmental conditions or at different stress and load levels. This suggests modelling the 

aging process of a component in terms of its effective age, which may evolve faster or slower 

than chronological time whether in adverse or favourable working conditions. 
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The aim of the present work is to develop a virtual age model, which describes the 

impacts of the time-varying and stressing operating conditions on both TTF and TTR, and to 

analyse the availability of an O&G system in the Arctic environment. Baseline failure and 

maintenance models are tuned with the data available for normal environmental conditions; 

according to the approach suggested in (Department of Defense, 1991), these parameters are 

then modified by weather-dependent multiplicative factors to take into account the accumulated 

effects of the dynamic weather conditions. Air temperature and wind speeds are considered the 

two elements of the weather conditions that most influence the components failure behaviour 

and the maintenance action performance and for this reason, they are forecasted for the whole 

operation period using long-term seasonal auto-regressive (AR) time-series. To cope with the 

lack of data, the weather-dependent multiplicative factors are assumed to be elicited from 

experts. The developed model in this study derives from XiaoFei and Min (2014) that propose a 

Markov additive process to describe a hazard rate evolution in terms of effective age, but with 

some original contributions. Namely, the model is specialized for the impacts of extreme 

weather conditions on equipment failure and repair rates, and eventually system reliability and 

availability performance. A direct Monte Carlo (MC) simulation approach is used to analyse 

system availability performance, under calendar-based scheduled Preventive Maintenance 

(PM) tasks. Additionally, the alternative assumptions of minimal and perfect repairs in RAM 

analyses are investigated. The sensitivity of system availability to the changes in multiplicative 

weather-dependent factors is investigated, as well. 

The rest of the paper is organised as follows. Section 2 describes the model and its 

underlying concepts and assumptions, as well as the equipment reliability and maintainability 

models under dynamic weather conditions together with the concept of perfect and minimal 

repairs. To illustrate the application of the developed model, a case study in Arctic offshore 

O&G operations is presented in Section 3, where an approach is developed for estimating the 

weather-dependent multiplicative factors, which enter the model of system availability 

performance under dynamic weather conditions. Additionally, the availability performance of 

the system under a calendar-based scheduled PM task is analysed and its sensitivity to weather-

dependent factors are discussed. Conclusions are drawn in Section 4.  

2 Model description 

Consider a multi-component system with binary components (i.e., having two states: State 1 – 

functioning - and State 0 – faulty), which undergo Corrective Maintenance (CM) tasks, upon 

failure and scheduled PM actions, periodically. The system operates in an Arctic location with 

dynamic weather conditions, whose harshness is summarized into a Weather Intensity Level 

(WIL), 𝐿𝑗, 𝑗 = 0,… , 𝐽. For instance, one may divide the WILs into three levels of normal (𝐿0), 

cold (𝐿1), and severe (𝐿2) weather conditions, respectively, as shown in Figure 1.  

In this work, we are interested in estimating the multi-component system availability 

over time, giving due account to the effect of dynamically evolving weather conditions on 

component TTR and TTF. For this, the system time horizon [0, 𝑡𝑒𝑛𝑑] is first divided into 𝐾 
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intervals [𝑡𝐾−1
′ , 𝑡𝐾

′  ) with length ∆𝑡𝐾
′ = 𝑡𝐾

′ − 𝑡𝐾−1
′ ;  𝐾 = 1,… ,𝑁, for 𝑡0

′ = 0 and 𝑡𝑁
′ = 𝑡𝑒𝑛𝑑. 

Then, the following two processes are considered:  

 WIL stepwise process: this is a stochastic process, where weather elements, such as 

wind speed and air temperatures, change randomly over time, although it is assumed 

that they remain constant during an interval [𝑡𝐾−1
′ , 𝑡𝐾

′  ). It should be also noted that the 

weather conditions may change while components are under repair or functioning.   

 The failure and repair processes: without loss of generality, it is assumed that the 

components are statistically-independent with Weibull-distributed failure times and 

exponentially-distributed repair times. These assumptions are justified by the following 

considerations: Weibull distribution is one of the most commonly used lifetime 

distributions in reliability analysis due to its flexibility in modelling lifetime data with 

different hazard rate behaviours (Murthy et al., 2004; Rausand and Høyland, 2004), 

whereas the exponential distribution is one of the simplest and most common repair 

time distributions used in industrial practice (Mannan, 2014).  

Figure 1 represents the behaviour of a binary component in the phase space (Zio, 2013), 

which evolves the aforementioned dynamic weather conditions in time. The component starts 

at time 𝑡 = 0 from WIL of 𝐿1 in operating state indicated by (0, (1, 𝐿1)). Then, the component 

fails at time 𝑡1 and, thus, enters state (𝑡1, (0, 𝐿1)). While the system is under repair, WIL 

changes to 𝐿0 at 𝑡1
′ . Therefore, the crew performs the rest of the CM under normal weather 

conditions until time 𝑡2, when the component is brought back to the functioning state, i.e., 

(𝑡2, (1, 𝐿0)). Finally, the component continues working while the WIL changes to 𝐿2 at 𝑡2
′  and 

remains at this level until 𝑡3
′ .  

 

Figure 1. A random-walk example of a two-state single-component system under dynamic WILs  

2.1 Modelling hazard rate under dynamic weather conditions 

In this Section, we propose a model to take account of the effect of the time-varying 

environmental conditions on the failure behaviour of O&G components operating in Arctic 

areas. The model is derived from the step-stress Accelerated Life Test (ALT) approach 

(Bagdonavicius and Nikulin, 2001; Elsayed, 2012), in which the acceleration of the degradation 
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process is obtained by the exposition of the test units to operating conditions severer than 

normal. By analogy with the ALT models, WILs are here considered as the stress levels applied 

to the components: harsher weather conditions put the system under severer stresses, and 

reduce component TTFs. 

Consider a location with a constant WIL of 𝐿𝑗, 𝑗 > 0. According to the approach 

suggested by Department of Defense (1991), the reduction in component TTF is pragmatically 

modelled by multiplying the baseline TTF, 𝑇𝑇𝐹𝐿0, which is the TTF of the component 

operating in a normal-climate region (i.e., base area), by a parameter 𝛿𝐿𝑗 ∈ (0,1] dependent on 

the WIL of 𝐿𝑗:  

𝑇𝑇𝐹𝐿𝑗 = 𝛿𝐿𝑗𝑇𝑇𝐹𝐿0                (1) 

where 𝛿𝐿𝑗 is constant as WIL remains unchanged. 

In this work, we consider aging components, whose failure times obey the Weibull 

Cumulative Distribution Function (CDF): 

𝐹𝐿0(𝑡) = 1 − e
(

𝑡

𝜂
𝐿0
)

𝛽
𝐿0

                     (2) 

where 휂𝐿0 is the scale parameter and 𝛽𝐿0 is the shape parameter for normal conditions, 

estimated using the data gathered in the base area. 

Application of simple rules to derive the CDF of a random variable, 𝑇𝑇𝐹𝐿𝑗, which is 

linearly dependent on a random variable (𝑇𝑇𝐹𝐿0), as given in Equation (1) with known 

distribution 𝐹𝐿0(𝑡0), given by Equation (2) yields (Bagdonavicius and Nikulin, 2001; Elsayed, 

2012): 

𝐹𝐿𝑗(𝑡) = 𝐹𝐿0 (
𝑡

𝛿𝐿0
) = 1 − e

(
𝑡

𝛿
𝐿0
𝜂
𝐿0
)

𝛽
𝐿0

                   (3) 

The hazard rate function of the component under the WIL of 𝐿𝐾 can be easily derived 

from Equation (3) (Zio, 2007), 

𝜆𝐿𝑗(𝑡) =
𝑓𝐿𝑗(𝑡)

1 − 𝐹𝐿𝑗(𝑡)
=

𝛽𝐿0

(𝛿𝐿𝑗휂𝐿0)
𝛽𝐿0

𝑡𝛽𝐿0−1
e
−(

𝑡
𝛿
𝐿𝑗
𝜂𝐿0

)

𝛽
𝐿0

e
−(

𝑡
𝛿
𝐿𝑗
𝜂𝐿0

)

𝛽
𝐿0
=

1

𝛿𝐿𝑗

𝛽𝐿0

휂𝐿𝑗
𝛽𝐿0
(
𝑡

𝛿𝐾
)
𝛽𝐿0−1

 

or  

𝜆𝐿𝑗(𝑡) =
1

𝛿
𝐿𝑗
𝜆𝐿0 (

𝑡

𝛿
𝐿𝑗
)               (4) 

where 𝑓𝐿𝑗(𝑡) is the Probability Density Function (PDF) of 𝑇𝑇𝐹𝐿𝑗, whereas 𝜆𝐿0(𝑡/𝛿𝐿𝑗) is the 

component hazard rate under normal operating conditions at time 𝑡/𝛿𝐿𝑗, which represents the 

equivalent time of the equipment. This introduces the concept of effective age, i.e., the age of a 

component which has been operating for time 𝑡 under WIL of 𝐿𝑗, is equivalent to 𝑡/𝛿𝐿𝑗, which 
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is the age of the component operating under normal weather conditions. In practice, at an 

arbitrary time 𝜏 the hazard rate of a component operating under WIL 𝐿𝑗  equals the base hazard 

rate at 𝜏/𝛿𝐿𝑗, which is the time equivalent to 𝜏, multiplied by 1/𝛿𝐿𝑗 (Figure 2). 

 

Figure 2. The relationship between hazard rates in the base area and under the WIL 𝐿𝑗 

Although Equation (4) explicitly indicates the dependence of the component hazard rate 

upon the weather conditions, it assumes that these conditions remain constant at WIL 𝐿𝑗 over 

time, i.e., static weather conditions, which is equivalent to single stress ALM. Thus, Equation 

(4) cannot be directly applied to the case of dynamically evolving weather conditions; rather it 

needs being extended to encode WIL changing over time. 

To do this, we propose a computational approach in which the evolution of the 

reliability of a component under dynamic weather conditions in each time interval [𝑡𝐾−1
′ , 𝑡𝐾

′  ) 

depends on the equivalent age updated at the beginning of the interval. That is, the component 

reliability and hazard rate at 𝑡 ∈ [𝑡𝐾−1
′ , 𝑡𝐾

′  ) with WIL 𝐿𝐾 ∈ {𝐿
𝑗}; 𝑗 = 0,… , 𝐽, can be 

respectively given by (Bagdonavicius and Nikulin, 2001), 

𝑅(𝑡) = 𝑅𝐿𝐾(𝑡 − 𝑡𝐾−1
′ + 𝑡𝑒,𝐾−1)    if    𝑡 ∈ [𝑡𝐾−1

′ , 𝑡𝐾
′  );  (𝐾 = 1,2, … ,𝑁)              (5) 

𝜆(𝑡) = 𝜆𝐿𝐾(𝑡 − 𝑡𝐾−1
′ + 𝑡𝑒,𝐾−1)     if    𝑡 ∈ [𝑡𝐾−1

′ , 𝑡𝐾
′  ); (𝐾 = 1,2,… , 𝑁)              (6) 

where 𝑡𝑒,𝐾−1 is the time equivalent to 𝑡𝐾−1
′  satisfying the system of equations: 

{
𝑅𝐿2(𝑡𝑒,1) = 𝑅𝐿1(𝑡1

′)
…

𝑅𝐿𝐾(𝑡𝑒,𝐾−1 ) =  𝑅𝐿𝐾−1(𝑡𝐾−1
′ − 𝑡𝐾−2

′ + 𝑡𝑒,𝐾−2)
; (𝐾 = 2,3, … ,𝑁)        (7) 

with 𝑡0
′ = 𝑡𝑒,0 = 0. 

For a Weibull failure distribution, the sets of equalities in Equation (7) can be 

successively solved at the end of every time bin for 𝑡𝑒,𝐾−1, 𝐾 = 2,3, … ,𝑁 by using Equation 

(3). For example, assume that the component starts in normal weather conditions, (i.e., 𝐿1 =

𝐿0), and survives the first time channel, upon which there is a sharp change in the weather 

conditions from 𝐿1 = 𝐿
0 to 𝐿2 = 𝐿

2 (see Figure 3). Thus, using Equation (7) we get: 
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𝑅L2(𝑡𝑒,1) = 𝑅𝐿1(𝑡1
′) → e

−(
𝑡𝑒,1

𝛿
𝐿2
𝜂
𝐿0
)

𝛽
𝐿0

= e
−(

𝑡1
′

𝛿
𝐿0
𝜂
𝐿0
)

𝛽
𝐿0

→ 𝑡𝑒,1 = 𝛿𝐿2
𝑡1
′

𝛿𝐿0
  

where 𝛿𝐿0 = 1, is the multiplicative weather-dependent factor corresponding to normal weather 

conditions within the first time channel (i.e., 𝐿1 = 𝐿0), whereas 𝛿𝐿2 is the factor related to the 

WIL within the second time channel, i.e., 𝐿2 = 𝐿2. In other words, the amount of life burnt in 

the first time channel at WIL 𝐿2 is equivalent to a smaller time if the component were at WIL 

𝐿2 because 𝛿𝐿2 ∈ (0,1). 

Repeating the application of Equation (7) to the next time channels, one finally gets: 

𝑡𝑒,𝐾−1 = 𝛿𝐿𝐾 ∑
∆𝑡𝑘−1

′

𝛿𝐿𝑘−1

𝐾
𝑘=2     if    𝑡 ∈ [𝑡𝐾−1

′ , 𝑡𝐾
′  ); (𝐾 = 2,3,… ,𝑁)               (8) 

where ∆𝑡𝑘−1
′ = 𝑡𝑘−1

′ − 𝑡𝑘−2
′ ;  𝑘 = 2,3, … , 𝐾 and 𝑡0

′ = 0.   

Figure 3 shows the updating of the equivalent age for a component operating under 

dynamic weather conditions with three WILs of {𝐿𝑗} = {𝐿0, 𝐿1, 𝐿2}. It can be seen that the 

functional form of the hazard rate at 𝑡 ∈ [𝑡𝐾−1
′ , 𝑡𝐾

′  ) is determined by 𝜆𝐿𝐾(∙), which is computed 

at an equivalent time, 𝑡 − 𝑡𝐾−1
′ + 𝑡𝑒,𝐾−1.  

 

Figure 3. Illustration of a piecewise Weibull hazard rate under dynamic weather conditions 

Finally, Equations (5) and (6) can be rewritten for a component with Weibull-

distributed TTFs using Equation (8). Thus, the reliability, 𝑅(𝑡), and the hazard rate, 𝜆(𝑡), of a 

component at time 𝑡 ∈ [𝑡𝐾−1
′ , 𝑡𝐾

′  ) on the condition that it has been operating under dynamic 

WILs of 𝐿𝑘; 𝑘 = 1,2, … , 𝐾, are given by, respectively: 

𝑅(𝑡) = exp [−(

𝑡−𝑡𝐾−1
′

𝛿𝐿𝐾
+∑

∆𝑡𝑘−1
′

𝛿𝐿𝑘−1

𝐾
𝑘=1

𝜂𝐿0
)

𝛽
𝐿0

]                           if  𝑡 ∈ [𝑡𝐾−1
′ , 𝑡𝐾

′  ); (𝐾 = 1,2, … ,𝑁)      (9) 
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𝜆(𝑡) =
𝛽
𝐿0

(𝛿𝐿𝐾𝜂𝐿0)
𝛽
𝐿0
(𝑡 − 𝑡𝐾−1

′ + 𝛿𝐿𝐾 ∑
∆𝑡𝑘−1
′

𝛿𝐿𝑘−1

𝐾
𝑘=1 )

𝛽𝐿0−1

 if  𝑡 ∈ [𝑡𝐾−1
′ , 𝑡𝐾

′  ); (𝐾 = 1,2, … ,𝑁)    (10) 

with ∆𝑡0
′ = 0. 

2.2 Modelling repair rate under dynamic weather conditions 

Upon component failure, the total downtime includes the waiting downtimes, 𝑊𝐷𝑇, such as the 

time required to shut down the unit, issue the work orders, wait for the spare parts and start up 

after repair, as well as the active repair time, TTR, i.e., the labour time required to repair the 

failed component. If the sum of all the waiting downtimes in the base area is denoted by 

𝑊𝐷𝑇𝐿0, then the total downtime of the unit in the base area, 𝐷𝑇𝐿0, can be expressed by, 

𝐷𝑇𝐿0 = 𝑊𝐷𝑇𝐿0 + 𝑇𝑇𝑅𝐿0             (11) 

where 𝑇𝑇𝑅𝐿0 is the TTR of the component operating in the base area, i.e., under normal 

weather conditions. 

The harsh weather conditions can result in extended downtimes owing to extended 

TTR, only. That is, we assume that the waiting downtimes are independent of the operating 

conditions. The same approach followed for the hazard rate modelling can be adopted for the 

estimation of the hazard rate of a component, taking account of dynamic weather conditions. 

First, consider a case where the CM tasks are taking place under static weather conditions, 

whose level is 𝐿𝑗 . We can, then, express the TTR of the component operating under WIL 𝐿𝑗 as 

𝑇𝑇𝑅𝐿𝑗 = 휀𝐿𝑗𝑇𝑇𝑅𝐿0             (12) 

where 휀𝐿𝑗 ≥ 1 is a weather-dependent multiplicative factor that is constant while WIL remains 

unchanged. By substituting Equation (12) into (11), we get the total downtime of a component 

operating under WIL 𝐿𝑗: 

𝐷𝑇𝐿𝑗 = 𝑊𝐷𝑇𝐿0 + 휀𝐿𝑗𝑇𝑇𝑅𝐿0            (13) 

To simplify Equation (13) and make it similar to Equation (1), we can set: 

𝐷𝑇𝐿𝑗 = 휀𝐿𝑗
∗ 𝐷𝑇𝐿0              (14) 

where 

휀
𝐿𝑗
∗ =

𝑊𝐷𝑇
𝐿0
+

𝐿𝑗
𝑇𝑇𝑅

𝐿0

𝑊𝐷𝑇𝐿0+𝑇𝑇𝑅𝐿0
             (15) 

Equation (15) modifies the weather-dependent factor, 휀𝐿𝑗, by including the overall waiting 

downtimes.  

By following the same approach used for the hazard rate modelling, and by adopting an 

exponential distribution function for component maintainability (i.e., setting the shape factor 

equal to 1), the repair rate of a component under WIL 𝐿𝑗 can be modelled as: 

µ𝐿𝑗 =
1

𝐿𝑗
∗ µ𝐿0              (16) 
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where µ𝐿0 is the constant repair rate of the component, which is the inverse of the mean total 

downtime 𝑀𝐷𝑇𝐿0, estimated using the operational data gathered in the base area. Such repair 

rate includes active repair time and waiting downtimes. 

To model the maintainability of a component under dynamic weather conditions, the 

equalities in Equation (7) can be solved for 𝑡𝑒,𝐾−1; 𝐾 = 2,3, … ,𝑁 using Equation (16). Thus,  

𝑡𝑒,𝐾−1 = 휀𝐿𝐾
∗ ∑

∆𝑡𝑘−1
′

𝑘−1
∗

𝐾
𝑘=2       if    𝑡 ∈ [𝑡𝐾−1

′ , 𝑡𝐾
′  ); (𝐾 = 2,3,… , 𝑁)        (17) 

The concepts of equivalent repair time and stepwise repair rate are illustrated in Figure 

4. The repair rate of a component only depends on the factor 휀𝐿𝐾
∗ , which remains at a constant 

level of µ𝐿0/휀𝐿𝐾
∗  within [𝑡𝐾−1

′ , 𝑡𝐾
′  ) (see Figure 4).  

 

Figure 4. Illustration of a stepwise repair rate under dynamic weather conditions 

The close form of repair rate, µ(𝑡), and maintainability function, 𝑀(𝑡), for a 

component, whose total downtimes are exponentially distributed, can be obtained by 

substituting Equation (17) into Equations (5) and (6), respectively: 

𝑀(𝑡) = 1 − exp [−(
𝑡−𝑡𝐾−1

′

𝐿𝐾
∗ + ∑

∆𝑡𝑘−1
′

𝐿𝑘−1
∗

𝐾
𝑘=1 ) µ𝐿0]  if  𝑡 ∈ [𝑡𝐾−1

′ , 𝑡𝐾
′  ); (𝐾 = 1,2,… , 𝑁)     (18) 

µ(𝑡) =
1

𝐿𝐾
∗ µ𝐿0    if    𝑡 ∈ [𝑡𝐾−1

′ , 𝑡𝐾
′  ); (𝐾 = 1,2,… , 𝑁)         (19) 

with ∆𝑡0
′ = 0. 

2.3 Perfect and minimal repair assumption 

The reliability of a component modelled by Equation (9) assumes that the initial component age 

is zero. In repairable systems, this assumption, also referred to as-good-as-new, entails that the 

component undergoes a perfect repair after each failure. However, in real practices, CM tasks 

cannot remove all the degradations that a component has experienced during its life. A more 
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conservative assumption is that of minimal repair, which assumes that although the component 

is brought back to the functioning state, it preserves all the accumulated degradations that has 

experienced during its previous life cycles (i.e., as-bad-as-old repair).  

In the paradigm shown in the previous section, it is sufficient to set the age of the 

repaired component equal to its age accumulated before the failure occurrence to include the 

minimal repair assumption in the reliability estimation of a component.  

Consider a component functioning in its (𝐶 + 1)th cycle of life (i.e., after 𝐶 consecutive 

failures), has started its current functioning state at time 𝑡0 = 𝑡𝑑𝐶 (Figure 5). During the 

previous cycle 𝑐, the component has been functioning from 𝑡𝑑𝑐−1 to 𝑡𝑢𝑐 , 𝑐 = 1,2, … , 𝐶, where 𝐶 

is the number of cycles performed within the component time horizon, prior to the present 

cycle, 𝐶 + 1. Thus, the uptime of the component during its 𝑐th cycle is given by, 

𝑢𝑝𝑡𝑖𝑚𝑒𝑐 = 𝑡𝑢𝑐 − 𝑡𝑑𝑐−1 , 𝑐 = 1,2, … , 𝐶           (20) 

with 𝑡𝑑0 = 0. 

 

Figure 5. System uptimes and their equivalent times 

Equation (20) implies that prior to its current cycle 𝐶 + 1, the component has 

accumulated a total uptime of ∑ 𝑢𝑝𝑡𝑖𝑚𝑒𝑐
𝐶
𝑐=1 . Such uptime needs to be converted into an 

equivalent time in order to take account of the accumulated effects of the dynamic weather 

conditions, to which the component has been exposed during its previous 𝐶 life cycles. To do 

this, the starting age of the component at the beginning of its current cycle is given by its 

effective age, 𝐴𝑔𝑒, 

𝐴𝑔𝑒 = ∑ 𝑢𝑝𝑡𝑖𝑚𝑒𝑒,𝑐
𝐶
𝑐=1              (21) 

where 𝑢𝑝𝑡𝑖𝑚𝑒𝑒,𝑐 is the time equivalent to 𝑢𝑝𝑡𝑖𝑚𝑒𝑐, obtained according to the intensity level of 

current weather conditions. Note that the effective age, 𝐴𝑔𝑒, cannot be used to estimate the 

system mean availability, �̅�, rather we need to use the accumulated uptimes 

�̅� =
∑ 𝑢𝑝𝑡𝑖𝑚𝑒𝑐
𝐶
𝑐=1

𝑡𝑒𝑛𝑑
              (22) 

2.4 Setting weather intensity levels and weather-dependent factors 

As given by Equations (10) and (19), two sets of model parameters are required to estimate the 

failure and repair rates of a component operating under dynamic weather conditions:  
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i. properties of the stochastic failure behaviour such as the shape and scale parameters 

of failure and repair distributions in base area; 

ii. weather-dependent multiplicative factors for every component corresponding to 

different WILs.  

As mentioned before, time-varying PHMs and step-stress ALMs can be adopted to 

model the influence of the environmental conditions on the component failure and repair 

behaviour. Statistical techniques (Cox, 1972; Jardine et al., 1987) can be used to estimate both 

the baseline parameters as well as the covariate multiplicative factors. However, the robustness 

of the results of such models strongly rely on the availability of the data on both failure times 

and the environmental conditions throughout the component life (Elsayed, 2012), which may 

not be available for the Arctic offshore O&G platforms (Barabadi et al., 2015). Alternatively, 

Naseri and Barabady (2015) used an approach based on which the base failure rates, taken from 

normal-climate regions, are modified by multiplicative factors elicited from experts to account 

for the extreme weather conditions.  

Notice that the underlying assumption of the model developed in this paper to give 

account to the dynamic weather conditions, derived from ALM, is that the applied stresses due 

to the extreme environmental conditions do not change the physics of the failure mechanisms 

(PHAM 2003). This assumption, which practically reflects in constant shape factors, is 

questionable in the Arctic offshore O&G applications, where the environmental conditions are 

combination of different stresses such as environmental (e.g. humidity, temperature) and 

mechanical (e.g. platform vibration due to crashing the sea ice) stresses. Thus, additional 

research work must be done to check the validity of the aforementioned hypothesis.  

2.5 Monte Carlo simulation approach 

In this study, a direct MC simulation technique (Dubi, 1998; Dubi, 2000; Siu, 1994; Zio, 2013) 

is used to estimate the availability of the oil processing plant operating under dynamic Arctic 

weather conditions. In particular, to include the stochastic behaviour of the weather conditions 

and their effects on system availability, the MC simulation scheme illustrated in Figure 6 has 

been developed.  

Namely, at the first step, the daily weather conditions are forecasted for the operation 

time horizon of 15 years. An auto-regressive AR time-series models have been used to account 

for the stochasticity of the long-term weather conditions. Such models, which are fitted to 

historical weather data, forecast daily weather conditions using a combination of stochastic and 

deterministic terms. For this purpose, the developed MC simulation scheme starts with 

sampling random numbers from standard normal distribution, 𝑁(0,1), for the realisations of the 

stochastic term of auto-regressive AR time-series models. The rest of the model parameters are 

estimated using historical weather data. A detailed description of the auto-regressive AR time-

series models is given in Appendix. Once weather conditions are forecasted, the weather-

dependent multiplicative factors, 𝛿𝐿𝐾 and  휀𝐿𝐾
∗  are determined for each component on a daily 

basis for the operation period, i.e., 𝐾 = 1,… ,5475. These values are used to adjust the hazard 
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and repair rate of the system components. A possible approach to quantify 𝛿𝐿𝐾 and  휀𝐿𝐾
∗  is 

described in the Case Study section.  

   

 

Figure 6. The MC simulation-based algorithm for system availability analysis taking account of dynamic weather 

conditions 

In the second step of the representation scheme, system failure and repair scenarios are 

simulated. As time goes on, the system stochastically changes its state, depending on the state 

of each component and system configuration. The system state is faulty when the simulated 

scenario leads the system in a configuration of minimal cut set. A CM task is, then, performed 

to bring the system back to one of its functioning configuration, under the assumption of either 

minimal or perfect repair. This procedure is followed until the mission time, 𝑡𝑒𝑛𝑑 is reached. In 

correspondence of each system failure and successive repair, the system downtime is recorded 

and also the number of system failures is collected in each simulation run. The next simulation 

run, then, starts by forecasting a new set of weather conditions and repeating the 

aforementioned processes, until a sufficiently large amount of simulation runs, 𝑛𝑠, are 

performed. System reliability is estimated using the collected Time to First Failures (TTFFs).  

3 Case study – oil and gas processing plant operating in the Arctic offshore 
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This Section illustrates the assessment of the availability of an oil processing train operating 

under dynamic Arctic weather conditions using the model proposed in this work. In particular, 

two different locations in the Norwegian Continental Shelf (NCS) are chosen (Figure 7) as the 

hypothetical locations of an O&G production plant, of which Ekofisk is in the North (i.e., base 

area with normal-climate conditions), whereas Hopen Island is located in the Barents Sea (i.e., 

Arctic region with harsh weather conditions). 

   

Figure 7. Hypothetical locations of an O&G production plant in the North and Barents Seas 

3.1 System description 

A typical O&G production plant is illustrated in Figure 8, which is adapted from Naseri and 

Barabady (2015). The main function of an O&G production plant is to split the well-stream 

fluid into water, oil, and natural gas, while removing the impurities. To this aim, the well-

stream fluid undergoes a three-stage separation process so that its water, oil, and gas are 

separated. While the produced water is routed to water treatment facilities, the gas is 

recompressed in several stages and, then, is routed to gas treatment facilities to be either re-

injected into the subsurface formations or exported to the market. Some portion of the produced 

gas is used as fuel gas, for electricity production and for running some equipment units on the 

platform. Produced oil is pumped into the subsea pipelines after being treated in oil treatment 

facilities. This study focuses on the availability of the oil processing train, only. The dashed 

black line in Figure 8 specifies the system boundary. A detailed description of the plant 

components and their functions are given in (Naseri and Barabady, 2015).  
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Figure 8. Illustration of a typical O&G separation plant, adopted from (Naseri and Barabady, 2015) 

The identified system consists of 25 binary components. By developing the fault tree 

corresponding to the top event (i.e., Oil Export failure, as shown in Figure 8), 23 minimal cut 

sets are identified (Table 1), 8 of which are of order 1, 6 are of order 2, and the remaining 9 are 

of order 3. 

Table 1. System minimal cut sets (Naseri and Barabady, 2015) 

Order Minimal cut sets 

1 SEP1 SEP2 

SEP3 TEG 

GS4 GS5 

CS4 CS5 

2 H1 & H2 H3 & H4 

GT3 & GT4 GT3 & TC4 

TC3 & GT4 TC3 & TC4 

3 EP1 & EP2 & EP3 GT5 & GT6 & GT7 

GT5 & GT6 & GEN3 GT5 & GEN2 & GT7 

GT5 & GEN2 & GEN3 GEN1 & GT6 & GT7 

GEN1 & GT6 & GEN3 GEN1 & GEN2 & GT7 

GEN1 & GEN2 & GEN3  

 

For the failure time distributions, the Offshore Reliability Data Handbook (OREDA) 

(OREDA Participants, 2009) reports the parameters of the hazard rate and average active repair 

time of a variety of the equipment units installed on offshore O&G platforms operating in the 

North and Norwegian Seas. These areas are taken as base areas in this study, where the weather 
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conditions are considered normal. The parameters of the Weibull hazard rates for the system 

components operating under normal weather conditions (i.e., 휂𝑖,𝐿0 and 𝛽𝑖,𝐿0, 𝑖 = 1, 2, … , 25) are 

presented in Table 2. To respect the intellectual property of the OREDA handbook, in this work 

we consider shape and scale parameters of the Weibull distributions of the components which 

are not those of the handbook but similar. In particular, the hazard rate is always considered 

constant in the OREDA handbook (i.e.,𝛽𝑖,𝐿0 = 1, 𝑖 = 1,… ,25), which corresponds to an 

exponential distribution of failure time.  

With respect to the repair times, based on the discussion with a number of operation and 

maintenance engineers, it is assumed that the waiting downtime for a critical failure is 72 

hours, which is considered independent of weather conditions. Thus, the Mean Total Downtime 

(MDT) of a component is conservatively set to the sum of the waiting downtime of 72 hours 

and the average active repair time, reported in the OREDA handbook. Mean active repair times 

and MDTs of system components are reported in Table 2. 

Table 2. Failure and repair rate parameters of system components operating in the base area 

Component ID 𝛽𝑖,𝐿0 
휂𝑖,𝐿0, 

hr 

Mean active 

repair time, 

hr 

𝑀𝐷𝑇𝑖,𝐿0, 

hr 

Separator SEP1, SEP2, SEP3 0.7621 22620 5.1 53.1 

Gas scrubber GS4, GS5 0.8685 31837 5.1 53.1 

Triethylene glycol contactor TEG 1.2348 13082 13 61 

Export pump EP1, EP2, EP3 1.1722 5182 14 62 

Crude oil heater H1, H2, H3, H4 1.039 10557 2.8 50.8 

Cooling system CS4, CS5 1.2963 55535 4.2 52.2 

Turbine-driven generator GEN1, GEN2, GEN3 0.8901 15735 20 68 

Gas turbine GT3, GT4, GT5, GT6, GT7 1.4841 2615 26 74 

Turbo-compressor TC3, TC4 1.0786 9126 5.2 53.2 

 

3.2 Weather intensity modelling 

Arctic environmental conditions such as snowstorms, atmospheric and spray icing, winds, low 

temperatures, sea ice, and polar low pressures are all extreme events that can result in both 

decreasing reliability and increasing downtimes, which lead to a reduced plant availability. For 

example, low temperatures can reduce component reliability by increasing the hazard rate of its 

internal items (Dutta, 1988; Obanijesu et al., 2011; Rudin and Choi, 2013; Satter et al., 2008; 

Stachowiak and Batchelor, 2006). The combination of low temperatures, wind, and 

precipitation can reduce crew accessibility to the failed components or increase human error 

due to the additional difficulties related to falling ice or slippery surfaces. Cold environment 

can also adversely influence crew performance and their analytical reasoning abilities (Pilcher 

et al., 2002). In this study, we limit our analysis to the effects of low temperatures and winds on 

system performance. In particular, based on the discussion with operation and maintenance 

engineers, it is assumed that wind only influences the performance of maintenance crew and 

does not affect equipment reliability, whereas temperature can have impacts on both.  
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3.2.1 Modelling the effects of low temperature on equipment hazard rate 

The quantification of the temperature-dependent factor 𝛿𝐿𝐾 requires comparing the long-term 

air temperature profile of the operation location in the Arctic against that of the base area over 

the system time horizon. In this study, we forecast the long-term temperature behaviour over 

the operation location considering time-series of the minimum daily temperatures. 

3.2.1.1 Forecasting long-term air temperature 

The empirical PDFs of the historical daily temperature data used in this study are shown in 

Figure 9. The daily temperature data are taken from the online climate database of the 

Norwegian Metrological Institute available at http://eklima.met.no. Notice that there are 

considerable differences in the temperature values in the selected Artic region and base area, 

although some of the observed temperatures in the Arctic location (i.e., Hopen) are in the range 

of the temperatures experienced in the base area (i.e., Ekofisk). 

 

Figure 9. PDF of historical daily temperatures 

Figure 10 illustrates a snapshot of Hopen Arctic temperature for a period of 2 years, 

starting from 01.07.2009 (red line). As can be seen, there is a clear seasonality in the 

temperature values as well as some random minimum peaks that are especially present during 

winter seasons. The applied model must be able to represent such properties for long-term 

forecasts.  
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Figure 10. Snapshot of Hopen temperature from 01.07.2009 to 30.06.2011 and forecasted temperature data from 

01.07.2011 to 30.06.2013 

In this study, seasonal auto-regressive AR time-series models have been adopted to 

predict the long-term daily air temperatures (see e.g. (Alexandridis and Zapranis, 2013; Benth 

et al., 2007; Šaltytė Benth and Benth, 2012; Taib and Benth, 2012; Wakaura and Ogata, 2007)). 

Such models describe the daily temperature data using several deterministic and stochastic 

terms generating the mean and residual processes, respectively. The deterministic term includes 

the seasonality term (i.e., linear and cyclic trends) as well as the AR process, whereas the 

stochastic term consists of a zero-mean and temporally independent standard normal random 

process and a seasonally time-dependent standard deviation function. Such terms can be 

estimated from observed data through a step-by-step decomposition process. A seasonal AR 

time-series to model the minimum daily air temperatures is given by (Benth et al., 2007; Šaltytė 

Benth and Benth, 2012): 

𝑇𝐸𝑀𝑃(𝐾) = 𝑆𝑇(𝐾) + ∑ 𝛼𝑝[𝑇𝐸𝑀𝑃(𝐾 − 𝑝) − 𝑆𝑇(𝐾 − 𝑝)]
𝑃
𝑝=1 + 𝜎𝑇(𝐾)𝜖𝑇       (23) 

where 𝑇𝐸𝑀𝑃(𝐾) is the minimum daily air temperature in °C, 𝑆𝑇(𝐾) is the seasonality term, 

𝛼𝑝, 𝑝 = 1, …𝑃 is the coefficient of 𝐴𝑅(𝑃) process, 𝜎𝑇(𝐾) is the time-dependent standard 

deviation, and 𝜖𝑇 is the standard normal random process. The detailed approach to model and 

forecast air temperatures as well as the estimated model parameters are given in the Appendix.  

Once different terms of the seasonal AR time series are modelled and their coefficients 

are estimated, one can forecast the daily temperature values for the whole operation period, 

which in this study is 15 years (i.e., 𝑡𝑒𝑛𝑑 = 15 𝑦𝑒𝑎𝑟𝑠). As shown in Figure 10, the forecasted 

temperatures (dotted line) have the same trend as that of historical data (solid line) and share 

similar seasonality and stochasticity.  

To forecast the temperature data for a period of 15 years, the time horizon is divided 

into 5475 intervals with equal lengths of 1 day (i.e., ∆𝑡𝐾
′ = 24 hours). Yet, due to the 

randomness of the residual process, one may represent the aleatory uncertainties associated 

with forecasted temperatures by estimating the 5th and 95th quantiles of the forecasted values. 

For example, the forecasted temperatures for Hopen together with the double-sided 90% 

confidence bounds are shown in Figure 11.  
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Figure 11. Forecast of minimum daily temperature and its double-sided 90% confidence bound in Hopen for 15 

years, starting from 01.07.2016 

Having forecasted the temperatures for the operation time horizon of 15 years, one can 

obtain the values of the temperature-dependent factors 𝛿𝐿𝑗 for system components by 

comparing the forecasted daily temperatures against a set of pre-determined thresholds. This 

study assumes the range specified by Equation (24). 

𝛿𝐿𝐾,𝑖 =

{
 
 

 
 
𝛿𝐿0,𝑖   if                               1°С ≤ 𝑇𝐾
𝛿𝐿1,𝑖   if                 − 5°С ≤ 𝑇𝐾 < 1

𝛿𝐿2,𝑖   if       − 10°С ≤ 𝑇𝐾 < −5°С

𝛿𝐿3,𝑖   if    − 20°С ≤ 𝑇𝐾 < −10°С

𝛿𝐿4,𝑖   if                         𝑇𝐾 < −20°С

;   {
𝐾 = 1,2, … ,5475
𝑖 = 1,2, … ,25       

                                     (24) 

where 𝛿𝐿𝑗,𝑖; 𝑗 = 0, … ,4 is the weather-dependent factor for the hazard rate of component 𝑖 

corresponding to WIL of 𝐿𝑗, and 𝑇𝐾 is the air temperature at platform location that has a 

constant value during the 𝐾th day (i.e. at the time interval [𝑡𝐾−1
′ , 𝑡𝐾

′  )). Values of temperature-

dependent factors corresponding to each WIL are presented in Table 3. Note that the values of 

the weather-dependent factors and those of the thresholds to set the WILs are assumed to be 

elicited from experts. 

Table 3. Weather-dependent parameters indicating the reduction in TTF and increase in TTR of the components 

Component ID 
𝛿𝐿𝑗,𝑖 , 𝑗 = 0, … ,5 휀𝐿𝑗,𝑖 , 𝑗 = 0, … ,4 

𝛿𝐿0,𝑖 𝛿𝐿1,𝑖  𝛿𝐿2,𝑖 𝛿𝐿3,𝑖 𝛿𝐿4,𝑖 휀𝐿0,𝑖 휀𝐿1,𝑖 휀𝐿2,𝑖 휀𝐿3,𝑖 

SEP1, SEP2, SEP3 

1 0.90 0.70 0.55 0.45 

1 2 3 4 

GS4, GS5 

TEG 

EP1, EP2, EP3 1 0.85 0.65 0.50 0.40 

H1, H2, H3, H4 1 0.80 0.60 0.50 0.40 

CS4, CS5 1 0.85 0.70 0.55 0.45 

GEN1, GEN2, GEN3 1 0.85 0.65 0.5 0.40 

GT3, GT4, GT5, GT6, GT7 1 0.85 0.60 0.45 0.35 

TC3, TC4 1 0.90 0.70 0.50 0.40 
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3.2.2 Modelling the effects of low temperatures and winds on equipment repair rate 

This study focuses on the adverse effects of the combination of low temperatures and wind 

speeds only on crew performance that can result in extended repair times. The other waiting 

downtimes, such as administrative delays, are assumed independent of the weather conditions. 

High-speed winds increase the body heat loss, which results in a reduction in felt temperatures. 

This process is known as wind chill effect (Bluestein and Quayle, 2003; Osczevski and 

Bluestein, 2005). Wind Chill Temperature (WCT) is defined as “the air temperature with no 

appreciable wind (i.e., still air) that would affect the same heat loss rate from exposed skin, as 

that due to the actual dry bulb temperature with wind” (Bluestein and Quayle, 2003). 

The term WCT is an equivalent temperature to account for wind speed contribution to 

felt temperatures. This study uses the WCT as a criterion to define the WILs for CM tasks. One 

of the most common wind chill models is developed in (Osczevski and Bluestein, 2005). This 

model is also used by the US National Weather Service and the Canadian Weather Service, 

Environment Canada (Osczevski and Bluestein, 2005), 

𝑊𝐶𝑇(𝐾) = 13.12 + 0.6215𝑇𝐸𝑀𝑃(𝐾) − 11.37𝑊𝐼𝑁𝐷(𝐾)0.16 +

0.3965TEMP(𝐾)𝑊𝐼𝑁𝐷(𝐾)0.16;  (𝐾 = 1,2, … ,𝑁)              (25) 

where 𝑇𝐸𝑀𝑃(𝐾) and 𝑊𝐼𝑁𝐷(𝐾) are respectively air temperature in °С and wind speed in 

km/hr at plant location. 

3.2.2.1 Forecasting long-term WCT 

From Equation (25), it arises that the long-term forecast of WCT requires both the 

temperature and wind speed forecasts. In the previous section, daily temperature forecasting by 

seasonal AR time-series model was discussed. In this study, a seasonal AR time-series model is 

adapted from (Alexandridis and Zapranis, 2013; Benth and Šaltytė Benth, 2009; Benth and 

Benth, 2010; Caporin and Preś, 2012) to predict the long-term wind speed data. For this 

purpose, a set of historical wind speed data for the selected locations are taken from the online 

climate database of the Norwegian Metrological Institute available at http://eklima.met.no, to 

which the seasonal AR time series model is fitted.  

Similar to the approach adapted to model air temperature data, the seasonal AR time-

series model can be applied to maximum daily wind speed data based on a conservative 

approach. Various deterministic components of the time series are modelled and eliminated 

through a step-by-step decomposition procedure. The seasonal AR time series to model and 

forecast the wind speed data is given by (Benth and Šaltytė Benth, 2009; Benth and Benth, 

2010): 

𝑊𝐼𝑁𝐷′(𝐾) = 𝑆𝑊(𝐾) + ∑ �̅�𝑝[𝑊𝐼𝑁𝐷
′(𝐾 − 𝑝) − 𝑆𝑊(𝐾 − 𝑝)]

�̅�
𝑝=1 + 𝜎𝑊(𝐾)𝜖𝑊       (26) 

where 𝑊𝐼𝑁𝐷′(𝐾) is the Box-Cox transformed maximum daily wind speed 𝑊𝐼𝑁𝐷(𝐾) (see the 

Appendix), �̅�𝑝, 𝑝 = 1,… �̅� is the coefficient of 𝐴𝑅(�̅�) process, 𝑆𝑊(𝐾) is the seasonality term, 

𝜎𝑊(𝐾) is the time-dependent standard deviation, and 𝜖𝑊 is the standard normal random 

http://eklima.met.no/
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process. The detailed approach to model and forecast wind speed temperatures as well as the 

estimated model parameters are given in the Appendix.  

Having forecasted the wind speeds for the operation time horizon of 15 years, starting 

from 01.07.2016, WCTs can be estimated using Equation (25). The predicted WCTs over the 

time horizon together with the associated uncertainties represented by the double-sided 90% 

confidence bound are illustrated in Figure 12 for Hopen Arctic region. 

  

Figure 12. Forecast of daily WCT and its 95% confidence bound in Hopen for 15 years, starting from 01.07.2016 

The values of weather-dependent factors, 휀𝐿𝑗,𝑖 corresponding to WIL of 𝐿𝑗, can be 

obtained by comparing the forecasted WCT data against a set of pre-determined thresholds. 

This study assumes the range specified by Equation (27): 

휀𝐿𝐾,𝑖 =

{
 
 

 
 
휀
𝐿0,𝑖
   if                       − 7 ≤ 𝑊𝐶𝑇𝐾

휀
𝐿1,𝑖
   if         − 15 ≤ 𝑊𝐶𝑇𝐾 < −7

휀
𝐿2,𝑖
   if      − 25 ≤ 𝑊𝐶𝑇𝐾 < −15

휀𝐿3,𝑖   if                      𝑊𝐶𝑇𝐾 < −25

;    {
𝐾 = 1,2, … ,5475
𝑖 = 1,2, … ,25       

                                       (27) 

where 𝑊𝐶𝑇𝐾 is WCT at platform location at that has a constant value during the 𝐾th day. 

Values of weather-dependent factors corresponding to each WIL are presented in Table 3.   

3.3 Results and discussion 

The instantaneous availability estimation of the oil processing train under the assumption of 

perfect and minimal repair is shown in Figure 13 for the locations of Hopen and Ekofisk, for 

the time horizon of 15 years, starting from 01.07.2016. The 1st of July is chosen as the starting 

date of operation because in the Arctic offshore the plans are usually commissioned in summer, 

to prevent any possible delay or extended downtimes due to bad weather conditions. However, 

this assumption does not undermine the analyses. The corresponding plant mean availabilities 

over the time horizon are presented in Table 4. As can be seen, the plant availability in Hopen 

shows considerable reductions with respect to that of Ekofisk due to the adverse effects of 
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harsh weather conditions, especially in winter times. For instance, under a perfect repair 

assumption, the plant mean availability reduces form 98.229% in Ekofisk to 97.272% in 

Hopen. The same conclusions can be drawn from the expected number of failures (Table 4). 

Considering a perfect repair assumption, on average the oil processing train operating in the 

base area has about 44 failures, whereas it has about 60 failures in the Barents Sea.  

 

Figure 13. Instantaneous availability of the plant operating at different locations of the NCS for 15 years, starting 

from 01.07.2016 

Table  4. Mean availabilities and expected number of failures for the oil processing train operating at different 

locations of the NCS for 15 years, starting from  01.07.2016 

Plant 

location 

Perfect repair Minimal repair 

Mean 

Availability, % 

Expected No. 

of Failure 

Mean 

Availability, % 

Expected No. 

of Failure 

Hopen 97.272 ± 0.005 59.89 88.407 ± 0.009 288.78 

Ekofisk 98.229 ± 0.004 43.85 95.289 ± 0.005 151.76 

 

The reductions in system availability over time are sharper in case of minimal repair. 

This is due to the preservation of all degradations due to aging of the components over time. 

Such degradations are accelerated in Arctic locations during winter times, with harsher weather 

conditions. For instance, the mean availability of the plant in Hopen reduces from 97.272% to 
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88.407% if minimal repair is assumed for the CM tasks. Similarly, since the components have 

preserved the degradations over time, the expected number of failures increases as well: more 

precisely, there is an increase from about 60 failures in 15 years for the perfect repair 

assumption to about 289 failures for the same period if the minimal repair is assumed.  

3.3.1 Sensitivity of plant availability to weather-dependent factors 

Various measures may be taken to improve plant reliability and availability performance. 

Winterization measures, such as insulation, are commonly performed in the Arctic O&G 

platforms to protect both the equipment and crew against the harsh weather conditions. 

However, winterization practices are costly and require large efforts, whose provision is a 

challenging task in remote Arctic locations. Besides, although winterization measures may 

improve the reliability performance of the system components, they may contribute to an 

extended system downtime due to the time required for removing and re-installing the 

insulations if a component fails. Moreover, winterization measures act as active safety barriers, 

and, thus, their failure may result in high-risk scenarios. Analysing system availability can play 

an important role in providing adequate information for decision-makers to optimise 

winterization measures and to analyse to what extent the performance of the plant is affected in 

case of implementing certain winterization measures. The effects of harsh weather conditions 

on maintenance times can be also reduced by providing adequate clothing for maintenance 

crew, improving accessibility to the failed equipment by implementing anti-icing and de-icing 

measures, increasing the number of maintenance crew, to name but a few.   

From the viewpoint of the failure and repair rate models developed in this study, the 

effects of modifications to the plant design (e.g. winterization, improving accessibility to the 

failed components) or to the comfort of maintenance crew and CM plans can contribute to the 

plant availability through the weather-dependent multiplicative factor 𝛿𝐿𝐾,𝑖 and 휀𝐿𝐾,𝑖. In this 

regard, scenario-based analysing the sensitivity of the system availability performance to the 

potential changes in weather-dependent factors can provide essential information for decision-

makers in the context of production optimisation.  

To this aim, the plant mean availability is estimated for a number of scenarios, 

corresponding to each weather-dependent multiplicative factor with the values of 𝛿𝐿𝐾,𝑖 ≠ 1 and 

휀𝐿𝐾,𝑖 ≠ 1  varied by certain percentages 𝑋 and 𝑌, respectively. More specifically, for each 

scenario, 𝛿𝐿𝐾,𝑖 and 휀𝐿𝐾,𝑖 are substituted by their modified values 𝛿𝐿𝐾,𝑖(1 + 𝑋) and 휀𝐿𝐾,𝑖(1 − 𝑌) 

to represent the improvement in the reliability and maintainability performance of the 

components through increasing the values of 𝛿𝐿𝐾,𝑖 and 휀𝐿𝐾,𝑖 by a factor of 𝑋 and 𝑌 (increase and 

decrease, respectively). Note that 𝛿𝐿𝐾,𝑖 = 1 refers to the days during which the weather 

conditions are considered normal and, thus, equipment failure does not depend upon 

winterization measures. Additionally, it is assumed that the improvements in the comfort of 

maintenance crew do not reduce active repair time less than under normal climate conditions. 

This assumption implies that the potential changes in 휀𝐿𝐾,𝑖 are not applied for the days where 
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휀𝐿𝐾,𝑖 = 1. However, one should also notice that applying design modifications and 

winterization measures could affect both the failure and repair times, simultaneously. For 

example, although installing insulations can result in a reduced failure rate, it causes extended 

downtimes in CM tasks, as the insulations must be removed from the failed component and 

placed back after repair is performed. The sensitivity of the plant availability to such 

dependencies is not analysed in this study.  

By taking 𝑋 = {−0.1,0.05,0,0.05,0.1,0.15} and 𝑌 = {−0.1,0.05,0,0.05,0.1,0.15}, a 

total number of 36 scenarios for plant availability assessment are investigated. Note that 

positive values of 𝑋 and 𝑌 indicate an improvement in component reliability performance and a 

reduction in maintenance times, respectively, while negative ones refer to an increase in hazard 

rates and component active repair times. The baseline case is 𝑋 = 𝑌 = 0, indicating that no 

changes are applied to the plant design. The plant mean availability for a production period of 

15 years under the assumption of minimal repair, is plotted for the defined sets of 𝑋 and 𝑌 in 

Figure 14-a. As can be seen, an increase in 𝛿𝐿𝐾,𝑖 raises plant availability by reducing the hazard 

rate of the components. Similarly, system availability can be improved by applying procedures 

or modifications that can reduce the active repair times. The same trend is present in Figure 14-

b, where the expected number of failures are plotted versus the changes in the weather-

dependent factors, where the number of system downtimes is considerably increased in 

comparison to a reduction in 𝛿𝐿𝐾,𝑖. However, as can be seen in Figures 14-a and 14-b, the 

changes in 휀𝐿𝐾,𝑖 do not considerably affect the expected number of failures and plant mean 

availability. For instance, while no design modifications are applied to improve the hazard rates 

(i.e., 𝑋 = 0), a 10% reduction in the values of 휀𝐿𝐾,𝑖 results in a reduction in expected number of 

failures by less than one failure. However, a 10% increase in the values of 𝛿𝐿𝐾,𝑖 leads to a 

decrease in the expected number of failures from 289.27 to 261.56.  

 

Figure 14. Plant mean availability (a) and expected number of failures (b) as a function of changes in weather-

dependent factors 
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3.3.2 Plant availability under scheduled PM 

PM actions are performed to retain an item in a specified condition by providing systematic 

inspection, detection, and prevention of incipient failures (Department of Defense, 1981). The 

aim of performing PM tasks can be reducing the number of failures, improving system safety, 

increasing plant production rate, and reducing unplanned system downtimes (Jardine and 

Tsang, 2013; Riane et al., 2009; Zio and Compare, 2013). Among different approaches to PM 

tasks, this study considers a calendar-based scheduled PM, whose impact on system 

performance is assessed in terms of plant availability and expected number of failures. 

A number of approaches have been propounded in the literature to cope with the issue 

of setting a PM policy (Pierskalla and Voelker, 1976; Zio and Compare, 2013). In this study, 

the PM is of an overhaul type, taking place every 𝜏𝑃𝑀 years, for a period of 3 weeks 

considering normal weather conditions. The underlying assumption is that the PM renews all 

the components (i.e., the starting age of the components is set to zero after being subjected to 

PM). This type of PM affects plant availability in two ways: i) it reduces plant availability by 

imposing shutdowns every 𝜏𝑃𝑀 years for a period of 3 weeks, and ii) it improves plant 

availability by removing all the previous degradations from components’ history, and thus 

reducing system hazard rates. 

Therefore, determining the optimal maintenance interval (i.e., the time spans between 

two successive maintenance actions) plays a key role in maximising the overall profitability of 

the plant taking account of, namely, PM costs, CM costs, plant production, and safety issues 

(Jardine and Tsang, 2013; Riane et al., 2009; Zio and Compare, 2013). This study includes only 

the plant availability and expected number of failures as the criteria for optimising 𝜏𝑃𝑀. To this 

aim, the plant availability is analysed for 𝜏𝑃𝑀 = {1,… ,6} years. The mean availabilities and 

expected number of failures are shown in Figures 15-a and 15-b, respectively. As illustrated in 

Figures 15-a, with a PM interval of 𝜏𝑃𝑀 = 2, 3, and 4 years, the plant availabilities are 93.42%, 

93.07%, and 93.02%, while as shown in Figure 15-b the expected number of failures are 

111.18, 132.55, and 147.35. By comparing such results, 𝜏𝑃𝑀 = 2 years is selected as the 

optimum PM interval. Figure 16 compares the plant instantaneous availability for two cases of 

operating without any PM and when the plant is completely shut down every 2 years for an 

overhaul. During the first 2 years, the plant availability is identical in both cases. However, 

when the first PM is implemented at the end of the second year, the plant availability is 

considerably improved compared to the operation where no PM policy is in place. Such 

differences in availabilities become larger as components age over time. For instance, the 

instantaneous availability of the plant during the winter of the 15th year of the plant is about 

71.48%, which will be increased to 92.90% in case of a PM with a 2-year interval. 
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Figure 15. Plant mean availability (a) and expected number of failures (b) corresponding to different PM intervals 

 

Figure 16. Plant instantaneous availability with and without PM 

3.3.3 Propagation of uncertainties associated with weather conditions 

Long-term forecasting of weather conditions is affected by epistemic uncertainty, which is due 

to the incomplete knowledge on the model and parameters (Aven et al., 2014; Zio and Aven, 

2013), and by aleatory uncertainty associated with weather conditions originating from inherent 

variability of the weather behaviour. In this study, the inherent randomness of the weather 

conditions is modelled by sampling two realisations from standard normal distribution for the 

final residuals of the seasonal AR time-series model to forecast long-term temperature and 

wind speeds (i.e., the first stochastic process shown in Figure 6). This process is repeated in 

each simulation run until sufficiently large amount of lifetime scenarios are generated. Figure 

17 shows the instantaneous availability of the oil processing train for a 15-year production 

period starting from 01.07.2016 under minimal repair assumption using the aforementioned 

approach. The corresponding mean availability and expected number of failures are 88.407 ± 

0.009% and 288.78, respectively.  
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Figure 17. Instantaneous availability of the plant for a production period of 15 years starting from 01.07.2016, 

estimated using variable and fixed sets of weather conditions.  

Alternatively, as for the first step, one may generate a set of temperature and wind speed 

values, based on which the weather-dependent multiplicative factors are determined. Such 

factors are, then, used for all MC simulation runs (Figure 17). Using this approach, the system 

availability can vary considerably depending on the set of forecasted weather conditions with 

sharp changes over the production time horizon. The 95% confidence bounds of the estimated 

instantaneous and mean availabilities can, then, be obtained by repeating this approach for a 

sufficiently large number of times. The 5th and 95th quantiles of the estimated instantaneous 

availabilities are shown in Figure 17. It can be seen that the differences between the 5th and 95th 

quantiles are much wider during the winter season: this is because the temperature and WTC 

experience large variations during winter season compared to those in other seasons. Such large 

variations are also evident in Figure 10.  

By comparing the two mentioned approaches, one can conclude that the differences in 

instantaneous availabilities during summer times are comparatively close compared to those 

estimated for the winter periods. Such large differences in instantaneous availabilities lead to 

considerable different estimations of plant mean availabilities and expected number of failures. 

The empirical PDF of estimated mean availabilities and expected number of failures are 

depicted in Figure 18. The 95% confidence bounds of plant mean availability and expected 

number of failures are [87.67%, 89.11%] and [277.04, 301.94], respectively, while using the 

former approach, the plant mean availability is 88.407% and it experiences 288.78 failures on 

average.   
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Figure 18. The empirical PDF of plant mean availability in the presence of uncertainties associated with weather 

condition forecasts 

4 Conclusions 

This study has concerned the problem of assessing system availability under dynamic operating 

conditions due to weather changes. To this aim, weather-dependent failure and repair rates have 

been modelled by analogy with step-stress ALT models. The models have been built assuming 

that the variable operating conditions do not induce a change in the failure mechanisms. 

According to the developed reliability and maintainability models, the functional form of the 

failure and repair rates follows the current WIL and the effects of previous exposures contribute 

to the models through the use of an equivalent age. For this purpose, a cumulative exposure 

model is applied.  

Given the complexities of dynamic operating conditions and their effects on the 

maintenance and operation of multi-component systems, obtaining an analytical expression for 

system availability is not feasible. Hence, a direct MC approach has been used to capture the 

impacts of dynamic and severe weather conditions. Assumptions of perfect and minimal repairs 

have been considered.  

The proposed model has been illustrated by analysing the availability of a typical oil 

processing train in offshore O&G production plants. To apply dynamic weather conditions, 

Hopen Island, a location in the Barents Sea has been chosen where the environmental 

conditions change through the year. The stochasticity of the air temperatures and wind speeds 

have been effectively modelled using seasonal AR time series. Defining a threshold for the 

normal climate conditions illustrated that although the overall weather conditions are harsher in 

the Barents Sea, in summer seasons the weather conditions can be considered normal. This 

approach results in lower uncertainties compared to the cases, where the weather conditions are 

assumed constant at a harsher level throughout the year. However, the stochastic behaviour of 

the weather conditions imposes some uncertainties to the weather forecasts, and thus to the 

resulting system availability under dynamic weather conditions. Such uncertainties are 

effectively represented by estimating the 5th and 95th quantiles of estimated instantaneous 

availabilities. 

Over long time horizons, e.g., 15 years, system components can age considerably 

resulting in reduced availability. To cope with such reductions, PM was considered to find an 
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optimum interval to perform the overhauls. System mean availability and expected number of 

failures were used as criteria to optimize. In the application, it turned out that a PM on a 2-year 

basis leads to considerable improvement in plant availability and reduction in the number of 

unplanned downtimes.  

Defining the thresholds of WILs and estimating the degree of changes in TTFs and 

TTRs corresponding to such WILs remain issues that require further research. In this study, it 

was assumed that operational data are available in some locations. Such data were modified in 

accordance to the changes in weather conditions. Alternatively, some other methods relying on 

PHMs, ALMs and expert opinions can be also used to estimate the values of weather-

dependent factors, all of which can be used in failure and repair models proposed in this study. 

Furthermore, the developed model can be used during the design phase if the life data in 

the operation location are scarce. This is of special interest in the context of O&G operations in 

the Arctic, where the weather conditions are harsh. To highlight the application of the proposed 

model in decision-making processes during the design of the O&G platforms for Arctic 

regions, the concept of winterization and its impacts on plant availability were discussed 

through analysing the system availability sensitivity to the weather-dependent factors. Based on 

the sensitivity analysis results, the plant availability is shown to be more sensitive to the effects 

of weather conditions on equipment hazard rates than on maintenance duration.  

5 Appendix – forecasting long-term air temperatures and wind speeds 

Seasonal auto-regressive AR time series is a common model to forecast the long-term daily air 

temperatures and wind speeds, while taking into account their seasonality and stochastic 

behaviours. A step-by-step approach can be used to model different deterministic and 

stochastic terms of the time series and estimate the model parameters values. The reader is 

referred to (Alexandridis and Zapranis, 2013; Benth and Benth, 2010; Benth et al., 2007; 

Caporin and Preś, 2012; Šaltytė Benth and Benth, 2012; Taib and Benth, 2012; Wakaura and 

Ogata, 2007) for further details on the model development, its underlying assumptions and 

applications. 

The main difference in modelling the air temperatures and wind speeds is that the wind 

speeds must be transformed prior to applying the time series model. A Box-Cox transformation 

is usually applied to the raw wind speed data, given by (Alexandridis and Zapranis, 2013; 

Benth and Šaltytė Benth, 2009; Benth and Benth, 2010): 

𝑊𝐼𝑁𝐷′(𝑡) = {
𝑊𝐼𝑁𝐷𝜔(𝑡)−1

𝜔
        for    𝜔 ≠ 0

ln𝜔                     for    𝜔 = 0
            (A-1) 

The values of the transformation parameters, 𝜔, are estimated by minimising the log-likelihood 

function of Equation (A-1) (Table A-1). The time-series model is, then, fitted to the 

transformed wind speed data. 

Table A-1. Parameters of the Box-Cox transformation for the considered locations in the NCS  
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Region 𝜔 

Hopen 0.627 

Bjørnøya 0.444 

Draugen 0.415 

Ekofisk 0.413 

 

Let us denote the minimum daily air temperatures and transformed maximum daily 

wind speeds by 𝑇𝐸𝑀𝑃 and 𝑊𝐼𝑁𝐷′ respectively. Further, let us denote the weather element by 

𝑊𝐸, such that 𝑊𝐸 ∈ {𝑇𝐸𝑀𝑃,𝑊𝐼𝑁𝐷′}. The seasonal AR time series model for 𝑊𝐸 is, then, 

given by,  

𝑊𝐸(𝑡) = 𝑊𝐸̅̅ ̅̅ ̅(𝑡) + 𝜓(𝑡)            (A-2) 

where 𝑊𝐸̅̅ ̅̅ ̅(𝑡) and 𝜓(𝑡) are the mean and residual processes, respectively. The mean term is 

given by (Benth and Šaltytė Benth, 2009; Benth and Benth, 2010; Benth et al., 2007), 

𝑊𝐸̅̅ ̅̅ ̅(𝑡) = 𝑆(𝑡) + ∑ 𝛼𝑝[𝑊𝐸(𝑡 − 𝑝) − 𝑆(𝑡 − 𝑝)]
𝑃
𝑝=1             (A-3) 

with 𝛼𝑝, 𝑝 = 1,… , 𝑃 being the parameters of the AR process of order 𝑃, indicated by 𝐴𝑅(𝑃), 

and 𝑆(𝑡) being the deterministic trend function, which consists of linear and cyclic terms given 

by (Benth and Šaltytė Benth, 2009; Benth and Benth, 2010; Benth et al., 2007), 

𝑆(𝑡) = {
𝑙0 + 𝑙1𝑡 + ∑ 𝑎0

𝑣 cos (
2𝜋

365
(𝑡 − 𝑎1

𝑣))𝑉
𝑣=1                       for    𝑊𝐸 = 𝑇𝐸𝑀𝑃

𝑙0 + 𝑙1𝑡 + ∑ [𝑎0
𝑣 cos (

2𝜋𝑣

365
𝑡) + 𝑎1

𝑣 sin (
2𝜋𝑣

365
𝑡)]𝑉

𝑣=1   for    𝑊𝐸 = 𝑊𝐼𝑁𝐷′
    (A-4) 

Furthermore, the residual process 𝜓(𝑡) is expressed by (Benth and Šaltytė Benth, 2009; 

Benth and Benth, 2010; Benth et al., 2007), 

𝜓(𝑡) = 𝜎(𝑡)𝜖                     (A-5) 

where 𝜖 is a zero-mean and temporally independent standard normal random process and 𝜎(𝑡) 

is a seasonally time-dependent standard deviation function, describing the remaining 

heteroskedasticity in air temperature and transformed wind speed residuals. The seasonal 

variance, 𝜎2(𝑡) can be obtained by fitting a truncated Fourier series to the squared of the 

residuals, i.e., 𝜓2(𝑡) (Benth and Šaltytė Benth, 2009; Benth and Benth, 2010; Benth et al., 

2007): 

𝜎2(𝑡) = 𝑏0 + ∑ [𝑏0
𝑣 cos (

2𝜋𝑣

365
𝑡) + 𝑏1

𝑣 sin (
2𝜋𝑣

365
𝑡)]𝑉′

𝑣=1             (A-6) 

The first step to use the aforementioned model is to estimate and remove the linear and 

cyclic trends of the data. The data are fitted to the function given by Equation (A-4) with 𝑉 = 2 

and 𝑉 = 4, for 𝑊𝐸 = 𝑇𝐸𝑀𝑃 and 𝑊𝐸 = 𝑊𝐼𝑁𝐷′, respectively. Such orders are chosen as they 

provide the simplest terms able to remove the seasonality from the data. 

Once the seasonality terms are removed, the residuals are checked for autocorrelation 

using the Ljung-Box test at a significance level of 5%. The possible autocorrelation is removed 
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from the data by introducing the AR structure of order 𝑃, 𝐴𝑅(𝑃). The order 𝑃 is determined by 

trying different values of 𝑃 starting from 1 and selecting the first for which the autocorrelation 

test for the residuals is rejected at a significance level of 5% (i.e., the residuals become non-

correlated). To model the seasonal variance of the residuals, 𝜎2(𝑡), the squared of residual 

terms, 𝜓(𝑡), is fitted to a truncated Fourier series of order 3, as by using such an order the 

seasonality of the 𝜎2(𝑡) is effectively removed. The final model residuals, 𝜖, then, can be 

obtained by dividing the residuals of 𝐴𝑅(𝑃) by the square root of 𝜎2(𝑡). The coefficients of 

𝜎2(𝑡) together with the mean and standard deviation of the final residuals are presented in 

Tables A-2, and A-3 for air temperatures and wind speed data, respectively. The developed 

time-series model is validated using both the in-sample and out-of-sample data, based on which 

the generated temperature data using the model lie within the 95% confidence bounds.  

Once the model parameters are estimated, one can forecast the daily temperature and 

wind speed values for the operation time horizon by estimating different terms of the developed 

seasonal AR time series models.   

The coefficients of the developed seasonal AR time series models are given in Tables 

A-2 and A-3, for air temperature and wind speed, respectively. The coefficients of the AR 

processes, which are not statistically significant at 5% are excluded from the analysis. 

Table A-2. Coefficients of the different terms of temperature seasonal AR time series model 

Region Linear trend Cyclic term 𝐴𝑅(𝑃) term Seasonal 

variance 

term 

Final residuals 

Mean Std. Skewness 

Hopen 𝑙0  -9.0721 

𝑙1  0.0005513 

𝑎0
1  -8.4996 

𝑎1
1  -327.1807 

𝑎0
2  0.8516 

𝑎1
2  22.5809 

𝛼1  0.9662 

𝛼2  -0.2558 

𝛼3  0.1011 

𝛼6  0.0327 

𝛼8  0.0342 

𝑏0  9.220 

𝑏0
1  8.6250 

𝑏1
1  5.2140 

𝑏0
2  -0.2275 

𝑏1
2  1.5310 

𝑏0
3  -0.9916 

𝑏1
3  -1.5170 

0.0048 1.0262 0.2257 

Bjørnøya 𝑙0  -4.8733 

𝑙1  0.0002819 

𝑎0
1  6.6245 

𝑎1
1  2402.869 

𝑎0
2  0.7194 

𝑎1
2  24.8840 

 𝛼1  0.8243 

𝛼2  -0.0961 

𝛼3  0.0445 

𝛼4  0.0184 

𝛼6  0.0221 

𝑏0  7.0840 

𝑏0
1  6.4630 

𝑏1
1  2.6480 

𝑏0
2  0.0619 

𝑏1
2  1.5190 

𝑏0
3  -0.6731 

𝑏1
3  -0.4579 

0.0022 1.0043 0.2377 

Draugen 𝑙0  6.3264 

𝑙1  0.0002075 

𝑎0
1  -5.1142  

𝑎1
1  34.5051  

𝑎0
2  0.7553  

𝑎1
2  30.3212 

𝛼1  0.7573 

𝛼2  -0.0343 

𝛼6  0.0376 

 

𝑏0  2.111 

𝑏0
1  0.8376 

𝑏1
1  0.0742 

𝑏0
2  -0.1375 

𝑏1
2  0.0151 

𝑏0
3  -0.2209 

𝑏1
3  0.2457 

0.0009 1.0018 0.0699 

Ekofisk 𝑙0  7.7212 

𝑙1  0.0002120 

𝑎0
1  5.1116  

𝑎1
1  -139.1165  

𝑎0
2  0.8187 

𝑎1
2  31.9496 

𝛼1  0.7721 

𝛼2  -0.0569 

𝛼3  0.0414 

𝛼8  0.0393 

𝛼9  -0.0440 

𝛼10  -0.0434 

𝑏0  1.342 

𝑏0
1  0.6253 

𝑏1
1  0.1435 

𝑏0
2  0.0961 

𝑏1
2  0.1316 

𝑏0
3  -0.0517 

0.0004 1.0006 -0.1506 
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𝑏1
3  0.0770 

 

Table A-3. Coefficients of the different terms of wind speed seasonal AR time series model 

Region Linear trend Cyclic term 𝐴𝑅(𝑃) term Seasonal 

variance 

term 

Final residuals 

Mean Std. Skewness 

Hopen 𝑙0̅  10.071 

𝑙1̅  0.0001007 

�̅�0
1  1.245 

�̅�1
1 -0.2233 

�̅�0
2  -0.1993 

�̅�1
2  0.1886 

�̅�0
3  -0.2081 

�̅�1
3 -0.03532 

�̅�0
4  0.2506 

�̅�1
4  0.02481 

�̅�1  0.3190 

�̅�4  0.0307 
�̅�0  8.74 

�̅�0
1  1.712 

�̅�1
1  0.8134 

�̅�0
2  -0.0500 

�̅�1
2  0.2107 

�̅�0
3  0.1376 

�̅�1
3  -0.1672 

-0.0002 1.0000 -0.0936 

Bjørnøya 𝑙0̅  7.9292 

𝑙1̅  3.3822E-05 

�̅�0
1  1.068 

�̅�1
1 0.1579 

�̅�0
2  -0.2032 

�̅�1
2  -0.0398 

�̅�0
3  -0.1031 

�̅�1
3 0.0195 

�̅�0
4  0.1115 

�̅�1
4  0.0577 

�̅�1  0.3601 

�̅�3  0.0358 

�̅�5  0.0149 

�̅�0  2.863 

�̅�0
1  0.3584 

�̅�1
1  -0.192 

�̅�0
2  -0.0458 

�̅�1
2  0.02008 

�̅�0
3  -0.0287 

�̅�1
3  -0.0601 

0.0000 1.0000 -0.0786 

Draugen 𝑙0̅  8.5656 

𝑙1̅  -9.77E-05 

�̅�0
1  0.8076 

�̅�1
1 -0.4268 

�̅�0
2  -0.0620 

�̅�1
2  0.1498 

�̅�0
3  0.0011 

�̅�1
3  0.1316 

�̅�0
4  0.0581 

�̅�1
4  -0.0336 

�̅�1  0.4524 �̅�0  2.106 

�̅�0
1  -0.2008 

�̅�1
1  -0.114 

�̅�0
2  -0.0019 

�̅�1
2  0.0884 

�̅�0
3  0.0162 

�̅�1
3  0.0755 

0.0007 1.0002 -0.0486 

Ekofisk 𝑙0̅  8.661 

𝑙1̅  -6.244E-05 

�̅�0
1  0.937 

�̅�1
1 -0.1646 

�̅�0
2  -0.0170 

�̅�1
2  0.1673 

�̅�0
3  0.0957 

�̅�1
3 0.0977 

�̅�0
4  0.0072 

�̅�1
4  -0.0526 

�̅�1  0.4917 

�̅�2  -0.0396 

�̅�3  -0.0480 

�̅�0  1.886 

�̅�0
1  0.3287 

�̅�1
1  0.1633 

�̅�0
2  -0.0462 

�̅�1
2  -0.0072 

�̅�0
3  -0.026 

�̅�1
3  -0.0786 

-0.0008 1.0002 -0.1751 
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