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Abstract

A variety of Prognostic and Health Management (PHM) algorithms have been developed in

the last years and some metrics have been proposed to evaluate their performances. However,

a general framework that allows to quantify the bene�t of PHM depending on these metrics

is still lacking. We propose a general, time-variant, analytical model that conservatively

evaluates the increase in system availability achievable when a component is equipped with

a PHM system of known performance metrics. The availability model builds on metrics

of literature and is applicable to di�erent contexts. A simulated case study is presented

concerning crack propagation in a mechanical component. A simpli�ed cost model is used

to compare the performance of predictive maintenance based on PHM with corrective and

scheduled maintenance.

Keywords: PHM metrics, Availability, Cost-Bene�t Analysis, Monte Carlo Simulation

Symbols & Acronyms

∆t Time interval between two successive Remaining Useful Life (RUL) predictions

λ Time window modi�er, such that tλ = Tpr + λ(Tf − Tpr); λ ∈ [0, 1]

bxc Integer part of x; that is, n ≤ x < n+ 1, x ∈ R, n ∈ N

N (µ, σ2) Normal distribution with mean µ and variance σ2
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U(a, b) Uniform distribution between a and b

W(a, b) Weibull distribution with shape parameter a and scale parameter b; the cumulative

density function (cdf) is FX (x) = 1− e(x
a

)b

µX Mean of random variable X

µΥλ
Mean of Υλ conditional on RUL is over-estimated

µΥλ Mean of Υλ conditional on RUL is under-estimated

RA Relative Accuracy over-estimation, which quanti�es the percentage error of the RUL

predictions, only when the RUL is over-estimated

ra Mean of RA

σX Standard deviation of random variable X

σΥλ
Standard deviation of Υλ conditional on RUL is over-estimated

σΥλ Standard deviation of Υλ conditional on RUL is under-estimated

RA Relative Accuracy under-estimation, which quanti�es the percentage error of the RUL

predictions, only when the RUL is under-estimated

ra Mean of RA

Υλ Point value summarizing the uncertainty in Rλ (e.g., mean, median, 10th percentile, etc.)

A(t) Component availability at time t

Be(p) Bernoulli distribution with parameter p: X ∼ Be(p) =⇒ X ∈ {0, 1} and P(X = 1) = p

C Cost of the PHM-driven maintenance

Ccor Cost of the corrective maintenance action

ccor Cost of a single corrective maintenance action

cDT Cost of component operation interruption

cprev Cost of a single preventive maintenance action

Csched Cost of the scheduled maintenance action

DT Component down-time over the time horizon T DT =
∫ T

0
(1− A(t))dt

DTD Detection Time Delay, Tdet − Td
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fDTD probability density function (pdf) of DTD

fRλ pdf of the predicted RUL at the time window indicated by λ

fTd(t) pdf of time Td

fTf (t) pdf of failure time Tf

fn False Negatives

fp False Positives

h ·∆t Time required to maintenance decision, if Υλ < h ·∆t

j ·∆t Time required to arrange predictive maintenance activity

MTTF Mean Time To Failure, i.e. E[Tf ]

N Number of maximum RUL predictions before failure

Ncor Number of corrective maintenance actions during the whole life-cycle of the component

Nprev Number of predictive maintenance actions during the whole life-cycle of the component

PS(M) Prediction Spread of metric M

Rλ Uncertain predicted RUL at the time indicated by λ

RA Relative Accuracy

ra Expected value of Relative Accuracy

RUL∗λ Actual RUL at the time indicated by λ

T Component time-horizon

Td Time instant at which the system reaches the detection threshold

Tf Time instant at which the system reaches the failure threshold

Tcor Time required to perform corrective maintenance

Tdet Actual detection time

Tprev Time required to perform predictive maintenance

Tpr Time of the �rst RUL prediction

Ts Prediction time at which the decision to remove the component from operation is taken
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W (t) Binary indicator variable: W (t) = 1 if the component is working at time t, W (t) = 0

otherwise

1 Introduction

Prognostics and Health Management (PHM) focuses on detection (i.e., the recognition of a devia-

tion from the normal operating condition), diagnostics (i.e., the characterization of the abnormal

state) and prognostics (i.e., the prediction of the evolution of the abnormal state up to failure) [1],

[2], [3], [4], [5].

PHM is very important for industry because it allows identifying problems at an early stage and

timely performing the necessary maintenance actions to anticipate failures ([6], [7]). The estimation

of the component Remaining Useful Life (RUL) enables setting an e�cient and agile maintenance

management, capable of providing the right part to the right place at the right time, together with

the necessary resources to perform the maintenance task. This reduces the interruption of business

operations and possible additional malfunctions introduced by errors deriving from maintenance.

Boosted by the appealing potential of PHM for industry, a large number of algorithms have been

developed in recent years (see [8], [9], [10] for overviews). PHM engineers look at the available

alternative PHM solutions to �nd the best combination for their problem. For this, performances

must be compared to make a decision about the best portfolio of solutions to invest in ([11], [12],

[13]).

A variety of performance metrics and indicators have been introduced for detection (e.g., [2], [14],

[15]), diagnostics (e.g., [16]) and prognostics (e.g., [10], [17], [18], [19]). Based on a thorough

survey of the literature on prediction metrics in di�erent engineering �elds, a classi�cation of prog-

nostic metrics into three main groups is proposed in [17], driven by the functional need that the

information provided by the metrics relates to:

1. Algorithmic performance metrics, which look at the capability of the PHM algorithms of

predicting the future evolution of the component degradation. The metrics of this class are

further divided into four groups:

• Accuracy-based, i.e., metrics evaluating the closeness between the estimated and the

corresponding true values of the RUL.

• Precision-based, i.e., metrics evaluating the variability of the RUL estimations.

• Robustness-based metrics, i.e., metrics related to the ability of the algorithm to provide

RUL estimations that tolerate perturbations.
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• Trajectory-based, i.e., metrics evaluating the capability of trajectory prediction.

2. Computational metrics, which refer to the computational burden of the PHM algorithms.

These metrics are particularly important when selecting algorithms for on-line prognostic

applications, where the time to provide the estimation becomes a fundamental decision driver.

3. Cost-bene�t metrics, which are intended to trade of the bene�t gained with the prognostic

capability against its cost.

The metrics of the latter class are fundamental for companies that have to decide about investing

to purchase the necessary instrumentation, software and specialized knowledge to yield bene�ts

from PHM. Obviously, both PHM costs and bene�ts are expected to depend on the algorithmic

performance metrics: roughly speaking, the stronger the detection, diagnostic and prognostic capa-

bilities, the larger the bene�t brought by PHM, the larger its cost. For this, linking the cost-bene�t

metrics to the algorithmic performance metrics is fundamental for conveying investments to PHM

and, thus, for the development of the PHM technology.

In spite of its relevance, this issue has been addressed in a few works, only. For example, Return

On Investment (ROI) has been used as a cost-bene�t metric in [20], [21] and [22], where, however,

the predicted RUL is assumed to obey a known distribution, which is not soundly related to the al-

gorithm performance metrics. Also, the decisions about when to remove the system from operation

are considered not dependent on time. Another cost-bene�t metric proposed in the PHM literature

is the Technical Value (TV, [15]), which depends on the performance in detection, diagnostics and

prognostics of critical failure modes and on the costs associated with false alarms. However, TV

relies on cost terms that are di�cult to estimate (e.g., the savings realized by isolating a fault

in advance) and assumes, again, constant performance metrics, whereas, in practice, they depend

on time (e.g., the probability of a failure mode). Moreover, TV does not fully account for the

scenarios stemming from erroneous detection, diagnosis and prognosis.

The aim of this work is to build a general, time-dependent, modeling framework to link a set of se-

lected PHM algorithmic performance metrics to the component availability, the metric that enters

most of the cost-bene�t models used by Decision Makers (DMs) to select the best option to invest

in. The assumption underlying this framework is that any PHM system can be summarized by a

set of parameters (i.e., performance metrics), which are the input variables of the mathematical

model that estimates the PHM costs and bene�ts, accounting for the related uncertainties. This

entails that we do not need running any PHM algorithm to estimate the component availability;

rather, we only need to know the values of its algorithmic performance metrics, whichever the

PHM system is.

It turns out that one of the main advantages of the proposed modeling framework is that it enables

estimating the system availability also before the PHM system is developed. Indeed, the mapping
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between availability and algorithmic performance metrics can also be used to identify the PHM

system design speci�cations, which the PHM developers have to ful�ll to guarantee the economic

viability of the PHM investment.

The remainder of the paper is organized as follows: Section 2 brie�y introduces the model setting;

Section 3 considers the impact of PHM on system availability; Section 4 illustrates a simulated

case study of single crack propagation and performs a sensitivity analysis of the availability model;

Section 5 compares the operational costs of PHM-driven maintenance and corrective and scheduled

maintenance. Section 6 concludes the work.

2 Model setting

Consider a degrading component, which is monitored every ∆t units of time with respect to a

continuous indicator variable of the degradation state (Figure 1). The degradation process is

stochastic and the monitored degradation state variable is characterized by two thresholds: the

detection threshold, which mainly depends on the characteristics of the instrumentation used to

measure the degradation variable (i.e., for values below this threshold it is not possible to detect

the degradation state), and the failure threshold, above which the component function is lost.

The uncertainty in the time instant Td at which the component reaches the �rst threshold is de-

scribed by the probability density function (pdf) fTd(t). If no action is taken, the component

continues to degrade up to failure time Tf , whose uncertainty is described by the pdf fTf (t).

We realistically assume that detection is not perfect and, thus, we use metrics of literature to

characterize the detection performance. In this respect, two detection metrics are widely used

in practice: false positive probability (i.e., the probability of triggering undue alarms) and false

negative probability (i.e., the probability of missing due alarms) ([14], [15]). An additional detec-

tion metric is the Detection Time Delay (DTD, [2]), which measures the interval from the time

when the component reaches the detectable degradation state and its detection. We use this latter

performance metric, motivated by a twofold justi�cation: on one side, DTD can be regarded as

a time-dependent false negative indicator (i.e., alarms are certainly missing up to DTD); on the

other side, the DTD values depend on the detection algorithm settings, which can be adjusted

such that the false positive probability is negligible in the early phases of the component life ([2]).

This introduces a simpli�cation in the model development. To be realistic, we assume that DTD

is a�ected by uncertainty, which is described by the pdf fDTD(t).

In this setting, the PHM system starts to predict the RUL at time Tpr = (bTd+DTD
∆t

c+ 1)∆t, where

b�c indicates the integer part of its argument. The number of predictions that the PHM system
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can perform before failure is N = bTf−Tpr
∆t
c. From now on, we assume that the system actually

fails at time Tpr +N∆t, instead of Tf ; the smaller ∆t, the smaller the approximation.

Finally, notice that in the modeling framework developed in this work we assume, for simplicity,

that the PHM-equipped component is a�ected by a single failure mode. This assumption prevents

us from tackling the complex issue of embedding diagnostic metrics into the availability model, and

considering all consequent scenarios that originate from decisions based on erroneous diagnoses of

the failure mode. This diagnostic issue will be investigated in future research work.
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Figure 1: Examples of degradation evolutions over time

3 Availability model of a component equipped with a PHM

system

In this Section, we build the mathematical model of the availability of a component equipped with

a PHM system. The availability at time t, A(t), is de�ned as [23]:

A(t) = P(W (t) = 1) (1)

where W (t) is the component working indicator function and W (t) = 1 if the component is work-

ing and W (t) = 0, otherwise. Notice that this de�nition is di�erent from that used in [24], where
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the probability in Equation 1 is integrated up to t, and divided by t, which gives the average

availability up to t [23].

To compute A(t) for the PHM-equipped component, we need to link PHM metrics and main-

tenance decisions with the probability to remove the component from operation during its life.

As already highlighted, the bene�t of the PHM system mainly lies in that the knowledge of the

predicted RUL allows timely arranging the maintenance actions: the time required to perform the

PHM-driven preventive maintenance action, Tprev (i.e., replace the degraded component before

failure), is smaller than the time Tcor required to reset the system into operation upon failure.

For generality, we de�ne Ts as the prediction time at which the decision to remove the component

from operation is taken, provided that the DM always removes the component upon receiving the

alarm from the PHM system. We also assume that maintenance decisions are based on point-wise

estimations, Υλ, of the component RUL predicted at time tλ = Tpr + λ(Tf − Tpr), λ ∈ [0, 1]. This

allows applying the developed model to both situations where the prognostic algorithm gives only

the point estimate of the expected RUL value (e.g., based on similarity measures [25], on regression

techniques [26], [27], [28], etc.) and when the prognostic algorithm gives also the uncertainty in

the RUL estimation (e.g., based on particle �ltering [1], [2], [12], [13]), in which case Υλ can be

the mean, median or some percentile of the predicted RUL distribution.

We assume that the PHM-equipped component is stopped when Υλ is smaller than h · ∆t and,
also, that j ·∆t time is required to arrange its maintenance activity. Thus, the RUL predictions

are useful only if they allow to stop the system at least j ≤ h time intervals ∆t before failure.

This modeling assumption is also bene�cial for the �exibility of the model, which can be applied

to more stringent (j = h) or relaxed (j = 1) situations. Roughly speaking, if PHM suggests to

remove the component at Ts ≤ Tf − j ·∆t, then W (t) = 0 ∀t ∈ [Ts + j ·∆t, Ts + j ·∆t + Tprev].

Otherwise (i.e., if PHM fails to trigger an alarm at all prediction times before Tf−j ·∆t),W (t) = 0

∀t ∈ [Tf , Tf + Tcor].

The proposed availability model relies on the False Positive (fp) metric, which is de�ned as

([18]):

fpλ = E[ΦPλ], ΦPλ =

1, if Υλ −RUL∗λ < −dthresholdλ

0, otherwise
(2)

where RUL∗λ is the actual component RUL at time tλ and dthresholdλ is a user-de�ned parameter,

which we set to 0, so that fp becomes an estimator of the probability of having RUL predictions

smaller than the real ones (i.e., fpλ = P(Υλ < RUL∗λ)).

To compute the probability P(Ts = tλ) to remove the component from operation at prediction in-

stant λ = 0, 1
N
, . . . , N−1

N
, we divide the life cycle of the component into two di�erent intervals:

• Early stop region: t < Tf − h ·∆t;
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• Timely stop region: Tf − h ·∆t ≤ t ≤ Tf − j ·∆t.

Before going into model details, we remind that our objective is to build an availability model

whose input parameters are the values of the algorithm performance metrics, whichever is the

PHM system. This model can be embedded into more or less re�ned cost-bene�t models to ei-

ther support DMs in de�ning the PHM system design speci�cations that guarantee the economic

viability of the PHM investment, or to quantify the expected pro�t of an existing PHM system

of given performance metrics (i.e., of known values of the performance). In this latter case, the

metrics values are estimated through a test campaign, as speci�ed in [11].

3.1 Early stop region

In the considered maintenance setting, P(Ts = tλ) = P(Υλ < h · ∆t). Then, for the early stop

region, we can write:

P(Ts = tλ) = P(Υλ < h ·∆t) ≤ P(Υλ < RUL∗λ) (3)

This inequality is justi�ed by the fact that event {Υλ < h ·∆t} is a subset of {Υλ < RUL∗λ}; this
allows conditioning the stop probability on the occurrence of under-estimated predictions:

P(Ts = tλ) = P(Ts = tλ|Υλ < RUL∗λ)× fpλ (4)

To further develop Equation 4, we need to characterize the uncertainty on predictions Υλ. For

this, we consider the Relative Accuracy metric (RAλ, [14], [17], [18]), which is a time variant index

quantifying the percentage error between the actual RUL∗λ and its estimation at a time tλ:

RAλ = 1−
∣∣∣∣Υλ −RUL∗λ

RUL∗λ

∣∣∣∣ (5)

RAλ is a random variable because it is a function of two dependent stochastic quantities, i.e., Υλ,

which represents on the uncertainty in the PHM RUL predictions, and RUL∗λ, which represents

the uncertainty in the failure time.

For simplicity, we develop the availability model by �rst assuming that we know the actual failure

times and, thus, the value of RUL∗. Then, we remove the dependence of the PHM-equipped

component availability on RUL∗λ by integrating on all its possible values. This is done through

the Monte Carlo procedure given in Appendix.

To characterize the uncertainty in RAλ, we rely on raλ, which is de�ned as:
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raλ = E[RAλ] = E
[
1−

∣∣∣∣Υλ −RUL∗λ
RUL∗λ

∣∣∣∣] = 1− E[|Υλ −RUL∗λ|]
RUL∗λ

(6)

By the total probability theorem [29], the numerator on the right hand side can be further developed

as

E[|Υλ −RUL∗λ|]
= E[Υλ −RUL∗λ|Υλ ≥ RUL∗λ]× P(Υλ ≥ RUL∗λ) + E[RUL∗λ −Υλ|Υλ < RUL∗λ]× P(Υλ < RUL∗λ)

= E[Υλ −RUL∗λ|Υλ ≥ RUL∗λ]× (1− fpλ) + E[RUL∗λ −Υλ|Υλ < RUL∗λ]× fpλ
From this, it emerges that due to the modulus in the de�nition of RAλ, if we used only raλ and

fpλ to describe the uncertainty on Υλ, we would get one equation encoding two variables (i.e.,

E[Υλ − RUL∗λ|Υλ ≥ RUL∗λ] and E[RUL∗λ − Υλ|Υλ < RUL∗λ]) and, thus, we could not establish a

useful link between raλ and P(Ts = tλ|Υλ < RUL∗λ) (Equation 4).

To solve this issue, we can observe that in the early stop region the component can be stopped if

the RUL is under-estimated, only. Then, we can slightly modify RAλ into RAλ by applying the

same de�nition in Equation 5 only to RUL under-estimations (i.e., when ΦPλ = 1):

RAλ = 1− RUL∗λ −Υλ

RUL∗λ
=

Υλ

RUL∗λ
, if Υλ ≤ RUL∗λ (7)

Thus:

raλ = 1− E[RUL∗λ −Υλ|RUL∗λ ≥ Υλ]

RUL∗λ
=

E[Υλ|RUL∗λ ≥ Υλ]

RUL∗λ
=

µΥλ

RUL∗λ
(8)

From Equation 8, the mean µΥλ
of Υλ conditional on that the RUL is under-estimated, can be

derived as raλ(N − k)∆t, where (N − k)∆t = RUL∗λ and k = bNλc. Moreover, the standard

deviation σΥλ of Υλ conditional on that the RUL is under-estimated, can be derived from the

Prediction Spread (PS) ([11], [13]) of RA, σRAλ , which is de�ned as:

σRAλ =

√
V ar

[
Υλ

RUL∗λ

∣∣∣∣RUL∗λ ≥ Υλ

]
(9)

Thus, σΥλ = σ2
RAλ

[(N − k)∆t]2, using the known quadratic property V ar[αX] = α2V ar[X], which

is valid for any random variable X (e.g., [29]) and α ∈ R.
For the sake of generality, we do not make any parametric assumption about the distribution of

Υλ conditional on that the RUL is under-estimated. Rather, we exploit the well-known one-sided

Chebyshev's inequalities (e.g., [30]), which can be applied to �nd probability upper and lower

bounds of any random variable that is known in terms of its �rst moments (i.e., mean µ and

variance σ2):

P(X ≥ µ+ a) ≤ σ2

σ2 + a2
(10)
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P(X ≤ µ− a) ≤ σ2

σ2 + a2
(11)

where a > 0.

To guarantee that a > 0, we distinguish the two cases that can occur at time tλ:

1. The expected RUL under-estimate µΥλ = raλ(N − k)∆t is larger than h · ∆t (time tλ1 in

Figure 2). In this case, we will stop the component with probability

P(Ts = tλ|Υλ < RUL∗λ) = P(Υλ ≤ h ·∆t|Υλ < RUL∗λ)

= P(Υλ − [raλ(N − k)∆t] ≤ h ·∆t− [raλ(N − k)∆t]|Υλ < RUL∗λ)

P(Υλ − µΥλ ≤ −a|Υλ < RUL∗λ) ≤
σ2
RAλ

[(N − k)∆t]2

σ2
RAλ

[(N − k)∆t]2 + a2
(12)

where a = raλ(N − k)∆t− h ·∆t.
When Equations 12 is taken as equality, it provides an estimate of the minimum bene�t

achievable from a PHM system with known prognostic metrics, as it gives the maximum

stop probability when we would not like to stop the component, to exploit all its useful

lifetime.

2. The RUL under-estimate µΥλ = raλ(N − k)∆t is smaller than h ·∆t (time tλ2 in Figure 2).

In this case, we expect to stop the component. The probability that we will not stop the

component is

P(Ts > tλ|Υλ < RUL∗λ) = P(Υλ ≥ h ·∆t|Υλ < RUL∗λ)

= P(Υλ − [raλ(N − k)∆t] ≥ h ·∆t− [raλ(N − k)∆t]|Υλ < RUL∗λ)

where we added the same quantity to both sides of the inequality. This entails that:

P(Υλ − µΥλ ≥ a|Υλ < RUL∗λ) ≤
σ2
RAλ

[(N − k)∆t]2

σ2
RAλ

[(N − k)∆t]2 + a2
(13)

where a = h ·∆t− raλ(N − k)∆t.

Equation 13 gives an upper bound for the probability of not stopping the component and,

thus, a lower bound of the stop probability. Given that in the early stop region a missed stop

is bene�cial for the availability of the model, to conservatively estimate the stop probability

given an under-estimation of RUL∗, we assume that it is equal to 1.
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Figure 2: Time tλ1 , µΥλ = raλ(N − k)∆t > h · ∆t: the Chebyshev Inequality 11 gives an upper

bound for the stop probability. Time tλ2 µΥλ = raλ(N − k)∆t < h ·∆t, the Chebyshev inequality

11 gives an upper bound for the no-stop probability.

To sum up, the bounds of the stop probability for prediction times in [Tpr, Tf − h∆t), i.e. λ ∈
{0, 1

N
, . . . , N−h−1

N
}, are (Equation 4):

1. If µΥλ = raλ(N − k)∆t > h ·∆t

P(Ts = tλ) =
σ2
RAλ

[(N − k)∆t]2

σ2
RAλ

[(N − k)∆t]2 + a2
× fpλ (14)

where a = raλ(N − k)∆t− h ·∆t.

2. Otherwise,

P(Ts = tλ) = fpλ (15)
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3.2 Timely stop region

In this Section, we develop the analytical model of the stop probability for time prediction instants

between Tf − h ·∆t and Tf − j ·∆t, which then enters the availability model in Equation 1. The

major di�erence with respect to the predictions before Tf − j ·∆t lies in that in the present case

the component can be stopped even if the current RUL estimate Υλ is larger than RUL
∗, provided

that Υλ ≤ h ·∆t:
P(Ts = tλ) = P(Υλ ≤ h ·∆t)

= P(Υλ ≤ h ·∆t|Υλ ≤ RUL∗λ)P(Υλ ≤ RUL∗λ) + P(Υλ ≤ h ·∆t|Υλ > RUL∗λ)P(Υλ > RUL∗λ)

= P(Υλ ≤ h ·∆t|Υλ ≤ RUL∗λ)fpλ + P(Υλ ≤ h ·∆t|Υλ > RUL∗λ)(1− fpλ) (16)

The �rst addendum reduces to fpλ: since we are at time instants after Tf − h ·∆t, then RUL∗λ ≤
h ·∆t for all prediction instants and P(Υλ ≤ h ·∆t|Υλ ≤ RUL∗λ) = 1.

Now, we need to model the second addendum, (i.e., the case ΦPλ = 0). Proceeding similarly as

before, we can de�ne RAλ as:

RAλ = 1− Υλ −RUL∗λ
RUL∗λ

= 2− Υλ

RUL∗λ
, if Υλ > RUL∗λ

The mean and standard of RAλ deviation are:

raλ = 1− E[Υλ −RUL∗λ|Υλ > RUL∗λ]

RUL∗λ
= 2− E[Υλ]

RUL∗λ

σRAλ =

√
V ar

[
Υλ

RUL∗λ

∣∣∣∣Υλ > RUL∗λ

]
Similarly as before, µΥλ

= (2−raλ)(N−k)∆t and σ2
Υλ

= σ2
RAλ

[(N−k)∆t]2; this allows us exploiting

the Chebyshev's inequalities to estimate the upper and lower bounds of P(Υλ ≤ h · ∆t|Υλ >

RUL∗λ):

1. If at time tλ the RUL over-estimate µΥλ
= (2− raλ)(N − k)∆t is smaller than h ·∆t, then,

we have:

P(Υλ ≥ h ·∆t|Υλ > RUL∗λ) = P(Υλ − [(2− raλ)(N − k)∆t]

≥ h ·∆t− [(2− raλ)(N − k)∆t]|Υλ > RUL∗λ)

where we have added the same quantity to both hands of the inequality. This entails that:

P(Υλ − µΥλ
≥ a|Υλ > RUL∗λ) ≤

σ2
RAλ

[(N − k)∆t]2

σ2
RAλ

[(N − k)∆t]2 + a2
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where a = h · ∆t − (2 − raλ)(N − k)∆t. Since P(Υλ < h · ∆t|Υλ > RUL∗λ) = 1 − P(Υλ ≥
h ·∆t|Υλ > RUL∗λ), we can write:

P(Υλ ≤ h ·∆t|Υλ > RUL∗λ) ≥ 1−
σ2
RAλ

[(N − k)∆t]2

σ2
RAλ

[(N − k)∆t]2 + a2
(17)

We take Equation 17 as an equality, which guarantees that we are under-estimating the

bene�t derived from the PHM system, as we are under-estimating the probability of triggering

alarms in the time instants where the component should be removed from operation to avoid

failures.

2. If at time tλ the mean RUL over-estimate µΥλ
= (2 − raλ)(N − k)∆t is larger than h ·∆t,

we assume that

P(Υλ ≤ h ·∆t|Υλ > RUL∗λ) = 0 (18)

This assumption is conservative, because according to the Chebyshev's inequality, 0 is always

smaller than the upper bound of the stop probability.

To sum up, from Equation 16 the lower bound of the stop probability for prediction times in

[Tf − h ·∆t, Tf − j ·∆t], i.e. λ ∈ {N−hN
, . . . , N−j

N
}, reads:

1. If (2− raλ)(N − k)∆t ≤ h ·∆t,

P(Ts = tλ) = fpλ +

(
1−

σ2
RAλ

[(N − k)∆t]2

σ2
RAλ

[(N − k)∆t]2 + a2

)
(1− fpλ) (19)

where a = h ·∆t− (2− raλ)(N − k)∆t

2. Otherwise,

P(Ts = tλ) = fpλ (20)

Finally notice that for the time prediction instants in [Tf−j ·∆t, Tf ], we assume that the component

is never removed and it will fail at time Tf .

To remove the dependence of A(t) from Tf and, thus, from RUL∗, which is represented by N

in all equations, it is not possible to �nd out an analytical formula. Nonetheless, A(t) can be

estimated using the Monte Carlo approach in Appendix, which integrates the results of di�erent

failure times.

4 Case study

In this Section, we apply the developed modeling framework to a component a�ected by a fatigue

degradation mechanism, which is simulated according to the Paris Erdogan (PE) model ([2], [31],

14



Figure 3):

1. The crack length xi reaches the �rst threshold, x = 1mm, according to the following equation:

xi+1 = xi + a× eω1
i

where a = 0.003 is the growth speed parameter and ω1
i ∼ N (−0.625, 1.5) models the un-

certainty in the speed values. The uncertainty in the arrival time at x = 1 is described by

fTd(t).

2. The crack length reaches the failure threshold x = 100mm according to the following equa-

tion:

xi+1 = xi + C × eω2
i (η
√
xi)

n

where C = 0.005 and n = 1.3 are parameters related to the component material properties

and are determined by experimental tests; η = 1 is a constant related to the characteristics

of the load and the position of the crack and ω2
i ∼ N (0, 1) is used to describe the uncertainty

in the crack growth speed values. The uncertainty in the arrival time at x = 100 is described

by fTf (t).

The numerical values are taken from [2].
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Figure 3: Crack propagation process: example

We assume that Tcor = χTpred, with χ > 1.

4.1 Availability model: application

In this Section, we apply the availability model developed in Section 3 to the case study of the

component equipped with a PHM system for the crack propagation mechanism. We use the
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Monte Carlo (MC) simulation [32] scheme reported in Appendix with stop probabilities equal to

the bounds given by Chebyshev's inequalities introduced earlier. As already pointed out, this

allows computing the minimum bene�t achievable with a PHM system of given characteristics and

performance.

The availability performance is evaluated on a time horizon corresponding to approximately 3/4

component life cycles, whereas the maintenance policy data and PHM data are summarized in

Table 1a and in Table 1b, respectively.

Figure 4 shows the values of ra, ra, fp, σRA and σRA as a function of λ; for simplicity, we have

assumed ra = ra = ra∗ and σRA = σRA = σRA

Parameter Value

h 5

j 3

χ 2

Tpred 100

∆t 10

T (horizon) 2900

(a) maintenance policy data

Parameter Value

interval [0, 0.25) [0.25, 0.5) [0.5, 0.75) [0.75, 1]

ra 0.75 0.8 0.85 0.9

fp 0.3 0.4 0.5 0.6

PS (σ2
RA) 0.04 0.0225 0.01 0.0025

ra 0.75 0.8 0.85 0.9

PS (σ2
RA

) 0.04 0.0225 0.01 0.0025

(b) PHM data

Table 1: PHM and maintenance policy data
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Figure 4: PHM metric data for the availability model

Figure 5 compares the instantaneous unavailability over time (i.e., 1−A(t)) of the PHM-equipped

component with that of a component undergoing corrective maintenance. The bars in Figure 5

represent the 68-th two-sided con�dence interval of the MC simulation error.

From Figure 5, it emerges that the mean unavailability in the whole time horizon T (i.e., 1
T

∫ T
0

(1−A(t))dt, [24]) of the PHM-equipped component is signi�cantly smaller than that of the compo-

nent with the corrective maintenance (0.1326 vs 0.1856). The point-wise unavailability (1−A(t))

of the PHM-equipped component oscillates less than that of the component under corrective main-

tenance, and reaches a stable steady state value much earlier. This indicates that the PHM system

reduces the variability in the population of similar components a�ected by the same degradation

process and equipped with the same PHM system.

Notice that the �rst peak of the unavailability of the PHM-equipped component precedes that of

the component undergoing corrective maintenance: this is due to the large value of σRA in the early

stop region, which strongly increases the probability of triggering early alarms. The second peaks

are close for the two components: this is indicative of the PHM capability of correctly identifying

the component failure time. After the second peak, the positions of the unavailability peaks of the

component under corrective maintenance follows the typical almost-periodic behavior, with period

MTTF + Tcor.

Figure 5 also compares the point-wise unavailability curves of the two components (equipped and

not equipped with PHM) to that obtained assuming that the uncertainty in Υλ is normally dis-
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tributed. The mean unavailability is 0.1040: the additional information about the uncertainty

distribution of the RUL predictions allows to not use the Chebyshev's inequalities in Equations

13-17 and, thus, to have smaller mean unavailability values. This is due to the fact that, as already

pointed out, the Chebyshev's inequalities over-estimate the stop probability when the prediction

time is far from failure, as it can be seen from the anticipated increase of the unavailability curve.

Notice that this result (i.e., the mean unavailability estimated when the distribution of Υλ is known

is smaller than that estimated through the Chebyshev's inequalities) does not depend on the par-

ticular distribution of Υλ. Rather, it is due to the fact that the inequalities are inherently upper

bounds of the true probabilities of stopping the component in the early stop region or leaving it

working in the timely stop region.
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Figure 5: Unavailability of the component under corrective maintenance and of the PHM-equipped

maintenance, both using the developed model and assuming normal predictions

4.2 Availability model sensitivity analysis

In this Section, we perform a sensitivity analysis to investigate how the considered PHM metrics

and maintenance policy data a�ect the availability of the system. To do this, we exploit the one-

at-a-time approach ([33]), i.e., we change one parameter at a time to analyze the corresponding

changes of both the unavailability 1−A(t) and its mean, the reference setting being that summa-

rized in Tables 1a and 1b.
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To reduce the possible cases to be investigated, we assume that the ra∗, fp and σRA metrics are

non-decreasing step-wise functions in the intervals [0, 0.25), [0.25, 0.5), [0.5, 0.75) and [0.75, 1]. In

particular, ra∗ takes values ra∗1, ra
∗
1 + 1

3
(ra∗4 − ra∗1), ra∗1 + 2

3
(ra∗4 − ra∗1) and ra∗4, respectively;

fp values are fp1, fp1 + 1
3
(fp4 − fp1), fp1 + 2

3
(fp4 − fp1) and fp4 and those of σRA are σRA1 ,

σRA1 − 1
3
(σRA1 − σRA4), σRA1 − 2

3
(σRA1 − σRA4) and σRA4 .

Figure 6 summarizes the impact of parameter j on the component unavailability. From the anal-

ysis of this Figure, it can be inferred that the closer the value of j to h, the larger the component

unavailability. This is justi�ed by the fact that we have fewer instants to take action. In particu-

lar, when j = h (i.e., when the component can be removed from operation only in the early stop

region), the value of the mean unavailability is much larger than the values of the other cases, as

there is no possibility to avoid failures in the timely stop region. Notice also that the �rst peak

does not change for the di�erent curves: it is related to the early stops, only, which do not depend

on j. On the contrary, the larger the value of j the larger the second peak, which relates to the

component failures: the larger the value of j, the larger the portion of the simulated component

undergoing failures and thus, the wider the peak area.
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Figure 6: Sensitivity of unavailability to j

Figure 7 evaluates the impact of ∆t on the component unavailability. The worst case is represented

by ∆t = 1 (i.e., the "continuously" monitored component). This is due to the fact that our model

over-estimates the stop probability at time instants far from failure: the smaller ∆t, the larger the
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number of predictions, the larger the probability of early removing the component from operation,

which does not allow exploiting all the useful life of the component. As it can be seen later, we

need to improve the accuracy in this region to avoid early stops.

With regards to the sensitivity to other ∆t values, the mean unavailability values for ∆t = 10 and

∆t = 25 are very similar to each other, though the case with ∆t = 10 is slightly better. When

∆t = 50, we can see a non-negligible increase in the mean unavailability; this is due to the reduc-

tion of predictions in the timely stop area, which leads to an increase in the number of failures, as

it can be seen from the wider second peak.
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Figure 7: Sensitivity of unavailability to ∆t

Figure 8 shows the impact of fp1 and fp4 on the component unavailability: di�erent sub-Figures

refer to di�erent values of fp1 and show the unavailability for di�erent values of fp4. Notice

that only the cases where fp4 ≥ fp1 are considered, being the performance metrics assumed not

decreasing over time.

From Figure 8, it emerges that unavailability is more sensitive to fp1 than fp4: there is a progressive

increase in the mean unavailability from Figure 8 top-left to Figure 8 bottom-right, which is due

to the early alarms that become more frequent as fp1 increases. In fact, the value of fp1 is directly

linked to the number of early predictions after Tpr: the larger its value, the larger the number

of early alarms. This can also be seen by the increasing value of the �rst peak of the point-wise

unavailability curves, which is due to false alarms, rather than failures.
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The component unavailability is not sensitive to fp4. This result is due to two opposite trends

arising with increasing values of fp4:

1. On one side, there is a smaller number of failures, which result in a reduction of the component

unavailability. This can be seen from Table 2, columns 3 and 6, which report the total number

Ncor of corrective maintenance actions performed over the 15000 MC trials.

2. On the other side, predictions related to the �rst instants yield a larger number of early stops

as fp4 increases. In this respect, Table 2, columns 4 and 8 report the total number Nprev

of preventive maintenance actions performed over the 15000 MC trials: the larger fp4, the

larger Nprev. These early stops do not allow exploiting the entire life time of the system and,

thus, increase the component unavailability.
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Figure 8: Sensitivity of unavailability to fp

21



fp1 fp4 Ncor Nprev fp1 fp4 Ncor Nprev

0.3 0.3 8034 37105 0.4 0.5 7756 39726

0.3 0.4 7953 37395 0.4 0.6 7732 40021

0.3 0.5 7850 37799 0.5 0.5 7642 41456

0.3 0.6 7839 38072 0.5 0.6 7639 41756

0.4 0.4 7829 39394 0.6 0.6 7449 43491

Table 2: Number of failures vs fp values

Figure 9 shows the impact of ra1 and ra4 on the unavailability curves. Di�erent sub-Figures re-

fer to di�erent values of ra1 and show the component unavailability for di�erent values of ra4,

ra4 ≥ ra1.

From the analysis of Figure 9, we can conclude that the component unavailability is not very sen-

sitive to both ra1 and ra4. This is due to the relatively weak dependency of the stop probability

on ra values, which directly derives from the Chebyshev's inequalities.

With regards to the sensitivity to ra4, considerations similar to those made for fp4 about the two

competing phenomena can be drawn to explain the poor sensitivity.
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Figure 9: Sensitivity of Unavailability to ra
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The sensitivity with respect to ra and σRA is summarized in Figures 10a and 10b, respectively. The

decision to focus only on the last values of the two metrics is due to the consideration that ra and

σRA a�ect the stop probability only for time instants between Tf−h ·∆t and Tf−j ·∆t. Figure 10a
shows that there is little sensitivity to ra4, because these values a�ect the unavailability behavior

only for few prediction times. For the same reasons, there is little sensitivity also to σRA4
(Figure

10b). To appreciate a larger sensitivity to these parameters, the values of j should be increased,

so as to increase the time interval in which these values enter the computation of unavailability.
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(a) Sensitivity of unavalability to ra4
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Figure 10: Sensitivity of unavalability to ra4 and σRA4

Finally, Figure 11 shows the impact of σRA1 and σRA4 on unavailability, the organization of the

subplots being similar to that of Figures 8 and 9.

From the analysis of Figure 11, it can be inferred that both σRA1 and σRA4 have a strong impact

on the mean unavailability of the PHM-equipped component: the smaller their values, the smaller

the mean unavailability. In this respect, we can notice that smaller values of σRA1 entail smaller

values of the �rst peak value, which completely disappears if σRA1 ≤ 0.1, meaning that most early

stops are prevented. Moreover, as σRA4 increases, there is a larger stop probability in the last

instants before failure, which leads the mean unavailability to decrease according to Chebyshev's

inequalities. The very large sensitivity to σRA allows us to conclude that the precision of the

predictions is, indeed, one of the most important driver of a PHM system, even more than the

accuracy.
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Figure 11: Sensitivity of Unavailability to σRA

5 Reverse engineering approach for maintenance decision mak-

ing

To the authors' best knowledge, there is no simple link between the metric values of a PHM system

and its development cost. Then, to give the Decision Maker (DM) the possibility of trading-o�

the bene�t arising from PHM against its possible initial development costs, we propose a reverse

engineering approach. That is, we develop a cost analysis to compare the operational undiscounted

cost C of a PHM-equipped component (i.e., without considering the initial development cost) with

those of corrective and scheduled maintenance (i.e., Ccor and Csched) [1]. This provides the DM

with a rough estimate of the economic bene�t achievable by PHM and, thus, gives him/her a basis

to decide whether to invest in PHM or not.

Notice that in the scheduled maintenance policy, the repair actions are performed every 650 units

of time: this corresponds to the 10th percentile of the component failure time, which in [1] has been

proved to be the optimal maintenance interval for the same case study considered in this work.

To compare the operational costs of the di�erent maintenance policies, we consider the following

simpli�ed cost model ([34], [35]):

C = Ncor × ccor +Nprev × cprev + cDT ×DT (21)
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where ccor and cprev are the costs related to corrective and preventive maintenance respectively,

whereas cDT represents the cost due to component operation interruption. Maintenance costs are

set to ccor = 800, cprev = 500 and cDT = 50, in arbitrary units; DT =
∫ T

0
(1 − A(t))dt is the total

expected down-time over the whole time horizon T , in arbitrary units; Ncor and Nprev are the

number of corrective and preventive maintenance actions performed over the component life cycle.

Obviously, in case of corrective maintenance policy Nprev = 0.

Notice that the considered cost values are illustrative and the operational cost model may be re-

�ned, for example, by including possible costs for monitoring and predicting, savings due to the

possibility of properly arranging preventive maintenance, discounting rates, etc.

The cost-bene�t analysis is developed for di�erent values of the considered PHM metrics: ra∗, σRA

(which are assumed to be equal for both the under-estimation and over-estimation cases) and fp.

In details, fp takes values in the set {0.3, 0.45, 0.6}, ra∗ in the set {0.8, 0.85, 0.9, 0.95}; σRA ranges

in [0.01, 0.16] at discrete points equally spaced by 0.015.

The remaining data are set as in the general case study presented in Section 4.1. For simplicity,

ra∗, σRA are all considered constant functions of λ.

Figure 12 shows an estimate of the operational cost C for the PHM-driven maintenance, which is

computed for each combination of the three considered metrics. These cost values are compared

with those of the scheduled and corrective maintenance approaches (Csched ' 25600 Ccor ' 30690),

as derived from MC simulation.

When C < Csched, it is worthwhile considering the development of a PHM system; on the con-

trary, when C ≥ Ccor, PHM is always unfavorable. Additional information to develop more re�ned

analysis (e.g., a more accurate cost model and/or more information about the PHM system to be

analyzed) is required in the in-between case (Csched ≤ C < Ccor). From Figure 12, it can also be

seen that, as expected, the metric value which mostly a�ects C is σRA: the smaller this value,

the smaller the operational cost C with PHM. When σRA ≤ 0.01, the PHM-driven maintenance is

always cheaper than the scheduled maintenance, whereas if σRA ≥ 0.16, PHM-driven maintenance

is always more expensive of both the scheduled and corrective approaches, unless the other two

metrics take their best values. Moreover, when σRA ≥ 0.07 the maintenance based on PHM is

always more expensive than the scheduled one, whichever the values of the other metrics. Al-

though this result seems discouraging, we have to keep in mind that this is the least achievable

bene�t derived from a PHM tool and that here we are assuming a constant value of σRA over the

whole λ, which is a quite conservative hypothesis as we may expect that the predictions will be

more accurate as the component approaches failure. With respect to ra∗, the larger its value, the

smaller the cost, whereas larger fp values entail larger cost. As already pointed out in the previous

Section, these results depend on the values of j, h and ∆t, which lead the availability to be more

sensitive to fp at small values of λ.
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Figure 12: Cost Analysys as function of fp, ra and σRA: C < Csched (best case) is indicated by

"�",Csched ≤ C < Ccor (medium case) by "o", C ≥ Ccor by "∗" (worst case)

Finally, Figure 13 plots the operational cost C over σRA for di�erent combinations of ra∗ and fp.

We can notice that C ranges in [20000, 37000], i.e., the best combination of metrics guarantees a

minimum achievable bene�t of about 25000−20000
25000

= 20% of the value of the scheduled maintenance.

From the elbow shape of the curves in Figure 13, we can also infer that for smaller values of σRA,

ra∗ has more impact on cost than fp, whereas as σRA increases, improvements in the value of ra∗

are less relevant than fp: when σRA = 0.16, all cost values that correspond to smaller values of fp

are smaller than those corresponding to larger fp values, for any value of ra∗.
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Figure 13: Sensitivity of C to the metrics

6 Conclusion

In this work, we have presented a general framework to compute the availability of a PHM-equipped

component, which is based on time-variant prognostic metrics proposed in the literature (fp, RA

and RA). The modeling framework proposed allows estimating the probability of removing the

component from operation at di�erent time instants. To get this estimation, we have not made

any parametric assumption to characterize the uncertainty in the predicted RUL; rather, we have

exploited the one-sided Chebyshev's inequalities, which encode the Prediction Spread of RA. These

inequalities provide an estimation of the least achievable availability bene�t of a given PHM system,

as they give an upper bound of the probability of removing the component from operation at time

instants far from failure (i.e, when stopping the component does not allow exploiting all its useful

life time) and an upper bound for the probability of not removing the component from operation

at time instants near failure (i.e, when not stopping the component causes failure).

In the developed model, the component can be removed from operation at all time instants except

the last j < h instants: this allows applying the model to settings in which some time is needed to

organize the preventive maintenance action, where if the failure is predicted too late, then there

is no advantage in preventive maintenance.

The model has been applied to a simulated case study and a sensitivity analysis has been performed
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to identify the performance indicators which the unavailability is more sensitive to.

A simpli�ed cost model has �nally been developed in support to DMs, who have to decide whether

to invest in PHM.

Further research work will investigate the application of the developed availability model to real

engineering situations, to identify when PHM can really bring advantages to the industry business.

Other possible developments concern further improvements of the availability model, e.g., for

relaxing some conservative assumptions or approximations and encoding diagnostics.
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Appendix A Availability Simulation Algorithms

The pseudo-code of the algorithm for estimating the component unavailability is as follows:

31



Data: raλ, raλ, σRAλ , σRAλ , fpλ ∀λ ∈ [0; 1]; Tcor, Tpred, fTf , fTd , fDTD,∆t, h, j, T

Result: U(t) = 1−A(t)

Repeat B times the following procedure:

Initialize Tes ← 0, MC counter Wb(0 : T )← 0

while Tes < T do

stop← 0, Td ∼ fTd(t) + Tes, DTD ∼ fDTD(t), Tpr ← (bTd+DTD
∆t c+ 1)∆t, Tf ∼ fTf (t) + Td,

N ← bTf−Tpr∆t c, Tmain ← Tcor, Ts ← Tf

if N > j then

for k in 0 : N − h− 1 do

λ← k
N

if raλ(N − k)∆t ≤ h ·∆t then
stop ∼ Be(fpλ)

else

a← h ·∆t− raλ(N − k)∆t, stop ∼ Be
(

σ2
RAλ

[(N−k)∆t]2

σ2
RAλ

[(N−k)∆t]2+a2
× fpλ

)
end

if stop = 1 then

tλ ← Tpr + k ·∆t, Tmain ← Tpred, Ts ← tλ + j ·∆t, go to ?

end

end

for k in N − h : N − j do
λ← k

N

if (2− raλ)(N − k)∆t ≤ h ·∆t then

a← h ·∆t− (2− raλ)(N − k)∆t, stop ∼ Be
(
fpλ + (1− fpλ)×

σ2
RAλ

[(N−k)∆t]2

σ2
RAλ

[(N−k)∆t]2+a2

)
else

stop ∼ Be(fpλ)

end

if stop = 1 then

tλ ← Tpr + k ·∆t, Tmain ← Tpred, Ts ← tλ + j ·∆t, go to ?

end

end

end

?: Tes ← Ts + Tmain, Wb(Ts : Tes)← 1

end

After B times

U(t) = 1−A(t) '
∑B

b=1Wb(t)

B

Algorithm 1: Availability simulation algorithm
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