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Abstract 

 

The Weibull distribution is widely used in reliability engineering to represent the component failure 

behaviour. The parameters of this distribution cannot be estimated by applying the widely used 

Maximum Likelihood Estimation (MLE) method when the collected field data contain right-censored 

times only. To overcome this limitation, the Weibayes method is often used in industrial practice: it 

consists in setting the value of the shape parameter based on prior knowledge and, then, estimating 

a lower confidence bound on the scale parameter. An alternative approach to estimate the Weibull 

parameters relies on the Markov Chain Monte Carlo technique, within the Bayesian statistics 

framework. This technique allows accommodating poor information on the parameter values, which 

is modeled by vague prior distributions. In this paper, a comparison between the Weibayes and 

MCMC approaches is proposed by way of a real industrial case study concerning data on Gas 

Turbine (GT) forced outages due to the mechanical failure of a GT component. 
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1 INTRODUCTION 

 

The Weibull distribution is probably the most widely used distribution in reliability engineering 

(Crowder et al., 1991). The reasons for this popularity is meanly due to the variety of shapes, and 

thus failure behaviors, it can accommodate.  

In general, both the scale and shape parameters of the Weibull distribution can be easily estimated by 

means of the Maximum Likelihood Estimation (MLE) method, as failure time datasets usually 



contain both actual failure times and right-censored observations (i.e., no failure occurred during the 

test time). However, when all the collected data are right-censored times, MLE can no longer be 

applied (Di Maio et al., 2015). To overcome this limitation, the Weibayes approach has been recently 

introduced (Abernethy, 2008) and adopted by some widely used commercial software tools for 

reliability engineering. 

The Weibayes method asks the experts to give a precise (i.e., with no uncertainty) value of the shape 

parameter based on prior experience or knowledge. Then, it provides a lower confidence bound on 

the scale parameter. Such precise estimation of the shape parameter may yield misleading results, if 

it is wrong.  

The Bayesian paradigm offers an alternative approach to estimate the parameters of the Weibull 

distribution, which are framed as random variables with their own probability distributions, so called 

prior distributions. Poor information on the parameter values can be accommodated by vague prior 

distributions and the Bayesian inference procedure allows adjusting them based on the evidence 

coming from field data, also reducing the uncertainty of the initial prior distributions. The posterior 

distribution thereby obtained encodes both the prior knowledge of the expert and the statistical 

evidence collected, and the posterior mean, median and credible intervals of the failure time can be 

extracted.  

However, analytical approaches to derive the posterior distributions are not always feasible in 

practical cases, such as that of Weibull components with no failure experienced during the test time 

and with only non-informative priors available. In these cases, one can resort to the Markov Chain 

Monte Carlo (MCMC) algorithm, which is an advanced Monte Carlo sampling technique that requires 

specific theoretic knowledge and experience for its use (Robert & Casella, 2004). 

In this work, Weibayes and Bayesian approaches are compared by way of a case study concerning 

data on Gas Turbine (GT) forced outage due to the mechanical failure of a GT component. The case 

study considered in this work is derived from a real industrial application. However, the details on 

both the component and the degradation mechanism that lead it to failure are not given to protect the 

intellectual property of General Electric (GE).  

The paper is organized as follows: in Section 2, basics of reliability analysis based on Weibull 

distribution are recalled; in Section 3, the Weibayes method is discussed. Section 4 presents Weibull 

Bayesian analysis for dealing with right-censored data only. The application of the methodology to 

the GE’s case study is described in Section 5, whereas in Section 6 conclusions are drawn.  

2 WEIBULL RELIABILITY ANALYSIS 

 



In this work, we assume a Weibull Probability Density Function (pdf), ( )f  , for the stochastic failure 

time T: 
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where   is the shape parameter and α is the scale parameter of the distribution. The corresponding 

reliability function is given by: 
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whereas the hazard rate is:  
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The shape parameter can be interpreted as follows: 

•  <1 corresponds to a decreasing hazard rate behavior. This models the behavior of components 

for which the failure frequency is larger when they are put into service and decreases over time. 

•  =1 in this case, the hazard rate is constant, and the Weibull distribution reduces to an 

exponential distribution. 

•  >1 corresponds to an increasing hazard rate behavior, which is typical of aging components. 

Let   be a positive random variable denoting the time at which a right-censoring kicks in: we observe 

either failure time T or censoring time  , whichever comes first. It follows that the observed dataset 

is a collection of random variables (Christensen et al., 2010): 

min( , )Y T           (4) 

In addition, the information on whether Y is an actual failure time or a censored observation is known, 

and is modeled by the indicator variable  

0   

1   

T

T


 
 

 
         (5) 

That is, δ is set to 1 if we observe an actual failure time, otherwise it is set to 0. We assume that T and 

  are statistically independent random variable, and that the censoring distribution does not depend 

on parameters   and β. These conditions are usually referred to as non-informative censoring 

(Christensen et al., 2010).  



In practice, the parameters of ( )f   are unknown and need to be estimated from data. To do this, let 

( , )
i i

y   be independent identically distributed observations on i=1,…,n units. For convenience, the 

first k observations are failure times and the remaining n-k observations are right-censored outcomes. 

Then, the likelihood of data D=(y,δ), where y=(y1,…,yn) and δ=(δ1,…,δn), reads (Christensen et al., 

2010): 

1
( , | ) [ ( | , )] [1 ( | , )]i i

i i
L f y R y

       
 D           (6) 

or, equivalently: 
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D           (7) 

The MLE technique estimates parameters α and β by maximizing Eqs. (6) or (7), or their the 

logarithm. In details, the ML estimates ̂  and ̂  of parameters α and β, respectively, are obtained 

by solving the following nonlinear equations (Gonzalez-Gonzalez et al., 2014): 
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When the observations are all right-censored (i.e., no failure occurred), Eq. (9) becomes: 
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and the MLEs of parameters α and β no longer exist. 

To overcome this problem, the Weibayes method has been introduced (Abernethy, 2008), which 

assumes that the shape parameter β is known from either prior experience or engineering knowledge 

on the physics of the failure. 

Basically, if (y1,…,yn) is a set of samples drawn from the Weibull distribution in Eq. (2), then 

 1
, ,

n
y y   can be regarded as samples from an exponential distribution of mean time to failure 

  , where β is known. Now, recall that when the observations from an exponential distributions 



are all right-censored, then a one-sided, lower 100(1  )% confidence bound on   is given by (Zio, 

2007): 
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Therefore, a one-sided, lower 100(1  )% confidence bound on the scale parameter is given by: 
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The value of α corresponding to ε=0.37 (i.e., 63% confidence level), 0.63ˆ
Weib

 , is the estimate that some 

commercial software tools provide in output to the reliability engineers. This value enters the 

maintenance decision process. 

3 BAYESIAN ANALYSIS 

Within the Bayesian paradigm, both scale parameter α and shape parameter   are positive random 

variables. The prior knowledge on their variability is specified in a joint prior distribution with pdf 

 ,   . Information brought by dataset D  is combined with  ,    by means of the Bayes formula: 
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where the conditional pdf ( , | )   D  is usually called posterior pdf (Robert & Casella, 2004). As 

usual, in this work we assume that random variables α and   are statistically independent. This 

implies that the prior pdf  ,    is the product of the marginal prior pdfs     and     of α and 

,  respectively. That is:  

       ,       0,  0           (14) 

When poor information is available, non-informative prior distributions can be elicited for both 

parameters as, for example, the improper extended Jeffery’s prior (Al-Kutubi & Hibrahim, 2009). 

The Bayes formula in Eq. (13) with likelihood given by Eq. (10) and priors by Eq. (14) gives a 

posterior distribution which is proportional to: 
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Eq. (15) defines the kernel of an unknown pdf. Thus, a Markov Chain Monte Carlo (MCMC) 

algorithm (Casella & Berger, 2004) can be exploited in order to obtain samples from the posterior 

distribution, which will be used to make posterior inference on parameters α and  .  

3.1 Markov Chain Monte Carlo 

MCMC is a family of algorithms that allow drawing samples from a probability distribution 

( ),  g θ θ Θ  (usually referred to as target distribution), which are produced by an ergodic Markov 

chain  
0t t

X


 (Andrieu & Thoms, 2008).  

The main building block of this class of algorithms is the Metropolis-Hastings (MH) algorithm. It 

requires the definition of a family of proposal distribution   , , q  θ θ Θ , which generate possible 

transitions for the Markov chain, say from θ  to θ' . The transitions are accepted or rejected according 

to the probability  
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Here, we focus on the (symmetric) random walk MH algorithm, in which    ,q q  θ θ θ θ  for some 

symmetric probability density q  on Θ . In this case, Eq. (16) reads: 
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As proposal distribution, we choose the multivariate Gaussian distribution  , ,Norm θ Σμ  with vector 

mean μ = 0  and covariance matrix Σ . This latter is a symmetric 2 2x  matrix, with 3 parameters to 

be set. The choice of their values is critical for the convergence of the MH algorithm: large values of 

standard deviations improve the effectiveness of the chain in spanning throughout Θ , but with small 

efficiency (i.e., large number of rejected samples). For this, algorithms that adaptively tune the 

parameters of Σ  have been devised. In this work, we have used the Adaptive Random Walk 

Metropolis-Hastings (ARWMH) algorithm (Andrieu & Thomas, 2008). 

The pseudo-code of this algorithm is briefly reported in the particular case under study, where we are 

interested in drawing from the joint posterior distribution of α and  ; that is, in our case  ,  θ , 

  ( | )g    D , and  q   is a bivariate Gaussian distribution (Andrieu & Thomas, 2008): 

 



1. Initialize 0 0 0
, ,  ρ  and 0

Σ , where 0
 and 0

  are the initial values for parameter α and   

respectively; 0
ρ  is an initial value for parameter ,  0,

t
t ρ which enters the updating step of 

covariance matrix 1t
Σ  in Eq. (20). 0

Σ  is the assigned starting value of covariance matrix of 

the proposal bivariate normal density  q  ; 0
  is a user-valued constant whose value must be 

set within the interval 
1

(
1 

,1], where   is set equal to 

22.38

p
, and 2p   is the number of 

parameters of the kernel (Andrieu & Thoms, 2008). This quantity enters the definition of the 

step-sizes 0
{ }

t t


  in Eq. (18). 
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After M  iterations of the ARWMH algorithm, we obtain two Markov chains, i.e.,  
 1, ,

 
t t M


 

 and 

 
 1, ,t M


 

, which are drawn from the marginal posteriors ( | )  D  and   ( | ),  D  of α and  , 

respectively.  

To pointwise summarize the uncertainty in the posterior distributions, we consider the posterior 

median ˆ
med

 : 
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and the posterior mean ˆ
mean
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Interval estimation of parameter α can also be given in terms of the  1 100%  Credible Interval 

(CI), which is the smallest subset  1 ,1 ,1

sup
,

inf
CI c c    
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0

R  such that:  
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In particular, if we set in Eq. (23) ,1
supc
 

  , then the value ,1

infc
   that solves Eq. (23) is the is the 

lower bound ,1
Lowerc
   of the one-sided  1 100%  lower credible interval 1CI 



 . Mutatis mutandis, the 

definitions of posterior mean and median, and credibility interval given for the scale parameter α are 

the same for parameter .  

4 CASE STUDY 

 

In this Section, we illustrate the application of the proposed methods to the GT forced outage due 

to a mechanical failure of GT component, which is assumed obeying a Weibull distribution. We rely 

on a dataset D containing 20n   right-censored observations. For confidentiality, these values are not 

reported. 

To clearly highlight the difference between the two methods, we consider two situations: 

1. Realistic problem: in this case, the value of the shape parameter currently used by GE is 

considered. 

2. Biased problem: in this case, the shape parameter is set to a value vary far from that used by 

GE. 

4.1 Realistic Problem 

According to the GE practice, the value of the shape parameter is set to  

ˆ
Weib

 6       (24) 



This value is derived from thorough engineering considerations, not reported for confidentiality. The 

application of the Weibayes approach when considering the one-sided 63% lower confidence bound 

on the scale parameter yields  

0.63

Weib
 662        (25) 

The MCMC bayesian analysis has been performed with the following prior distributions: 

• The generalized improper Jeffery prior distribution 

 
1

 , 0,  0
a

a  


          (26) 

with hyper-parameter 2a  . This corresponds to a diffuse prior distribution (i.e., with a wide 

support on ℝ+), whose large variability is coherent with our poor knowledge base on its actual 

value. 

• For the shape parameter, we have chosen a distribution centered on β=6, with probability mass 

of 0.8 uniformly distributed between [5.8,6.2] (i.e., symmetrically on β=6), a probability mass 

of 0.1 uniformly distributed in [0,5.8], whereas the remaining probability mass of 0.1 is 

uniformly distributed in [6.2,8]. This choice is justified by the following considerations:  

o To exploit the GE prior knowledge we have put a large portion of probability on the 

interval [5.8, 6.2] that encompasses the value ˆ
Weib

  6 provided by sound engineering 

considerations. In fact, we expect that if this value is correct, the MCMC for shape 

parameter will result in a Markov chain moving not too far from this value. 

o The prior distribution leaves a relatively small portion of probability in the remaining 

parts of the interval [0,8]. This is consistent with our prior knowledge: we assume that 

values in [0,8] are plausible values for parameter β. 

o Values of scale parameters larger than 8 correspond to very small uncertainty in the 

failure times (values of standard deviation almost 13% of the scale parameter). This 

situation is not realistic. 

To draw samples from the posterior distribution ( , | ),   D  the ARWMH algorithm described in 

Section 4 has been run for M=5,000,000 iterations with variables 0 0 0
, ,  ρ  0

Σ , and 0
 initialized as 

reported in Table 1. 
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Table 1. Values of parameter 0 0 0
, ,    0

Σ  and 0
  

 

Then, we have applied:  

1. a burn-in of 2,000,000 samples, i.e., the first 2,000,000 samples have been discarded to 

eliminate the bias introduced by the position of the initial point. 

2. a sub-sampling (commonly referred to as thinning) every 100 samples to reduce the 

correlation between the successive points of the Markov chains generated by the 

algorithm. 

By so doing, the cardinality of the original Markov chains has reduced from 3,000,000 to M 30000 

sample points. The trace plots (i.e., the plot of the sampled point, ordinate, vs the sample step, 

abscissa) relevant to the Markov chains    1, ,t t M


 
 and    1, ,t t M


 

 are shown in Figures 1 and 2, 

respectively. From these Figures, it emerges that there is good mixing, i.e., the domains of the two 

posterior distributions ( | )  D  and ( | )  D  are well explored around the distribution modes. In 

particular, the trace plot of    1, ,t t M


 
 in Figure 2 shows that this chain tends to sample in proximity 

of ˆ
Weib

 6, although samples are rarely (i.e., with small probability) drawn also from the remaining 

part of the support. 

 

Figure 1: trace plot of Markov chain    1, , t t M
α (last 10000 sample points). 
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Figure 2: trace plot of Markov chain    1, , t t M
β (last 10000 sample points). 

Figures 3 and 4 show the autocorrelation plots of chain    1, ,t t M


 
 and    1, ,t t M


 

, respectively. That 

is, for 1,2,...l  , 40 we measure the extent to which the values of the chain at time ( )t l  and time t  

are linearly related, for every t=1,…, M . 

From these Figures, it results that samples from both Markov chains can be considered almost 

uncorrelated. 

 

 

Figure 3: Autocorrelation plot of Markov chain    1, , t t M
α  
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Figure 4: Autocorrelation plot of Markov chain    1, , t t M
β  

To assess the convergence to the posterior distribution, i.e., the stationarity of the two Markov chains 

   1, ,t t M


 
 and    1, ,t t M


 

 we have exploited two standard diagnostic methods, whose results are 

summarized in Table 2:  

• the Effective Sample Size (ESS), which gives an estimate of the equivalent number of 

independent iterations that the chain represents (Robert & Casella, 2010). For example, the 30000 

samples from chain    1, ,t t M


 
 contain 11682 independent samples (Table 2, second column, 

second row), being the information in the remaining 18318 samples already contained in those 

11682.  

• The Geweke Test takes two nonoverlapping parts (usually the first 0.1 and last 0.5 proportions) 

of the Markov chain and compares the means of both parts, using a difference of means test to 

see if the two parts, of the chain are from the same distribution (null hypothesis) (Robert & 

Casella, 2010). 

From Table 2, it emerges that the algorithm has converged to the desired target distribution. 

Diagnostic 

Method 

  Comments 

ESS 11681 29981 Passed 

Geweke Test 

p-value 

0.333 0.358 The null hypothesis of 

stationarity cannot be 

refused 

Table 2: Results of some diagnostic methods to assess stationarity of the two Markov chains    1, ,t t M


 
 and 

   1, ,t t M


 
 

Figures 5 and 6 show the Kernel Density Estimation (KDE) (continuous line) and the Empirical 

Histogram (EH) of the estimated posterior pdfs ( | )  D  and ( | )  D , respectively. The information in 

the posterior distribution is summarized by the values of posterior mean and median (Eqs. (21-22), 

respectively), 95% CI, and one-sided 63% lower credibility bound for scale parameters. These are 

reported in Table 3, whereas Table 4 reports those of the shape parameter. 

 



 

Figure 5: KDE and EH of posterior pdf ( | )  D  

 

Figure 6: KDE and EH of posterior pdf ( | )  D  
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Table 3: Posterior mean ( ˆ
mean

 ), posterior median ( ˆ
med

 ), 95% CI, and one sided 63% lower credibility bound (

,0.63
Lowerc


) for scale parameter α. 
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sup
,

inf
CI c c 

   
,0.63

Lowerc
  

6.02 6.00 
(5.07, 7.37) 

5.99 

Table 4: Posterior mean ( ˆ
mean

 ), posterior median ( ˆ
med

 ), 95% CI, and one-sided 63% lower credibility bound (

,0.63
Lowerc


) for scale parameter  . 

The Bayesian framework gives a shape parameter value of almost 6 (either when referring to posterior 

median or posterior mean). This means that the available evidence supports the prior knowledge on 

β. With respect to the scale parameter, the one-sided 63% lower confidence bound 0.63

Weib
 =662 of the 

Weibayes approach and the-one sided 63% lower credibility bound ,0.63
Lowerc
 =921.7 estimated by the 

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.2

0.4

0.6

0.8

1

1.2
x 10

-3 Estimated posterior density Scale Parameter

t

D
e

n
s
it
y

 

 

EH

KDE

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

3
Estimated posterior density Shape Parameter

t

D
e

n
s
it
y

 

 

EH

KDE



MCMC are quite far from each other (almost 30% of difference). In particular, the result of the 

Weibayes method is more conservative.  

4.2 Biased Problem 

The value of the shape parameter considered in this problem is ˆ
Weib

  0.70, i.e., far from that used 

by GE in industrial practice. The aim, in fact, is to propose a comparison of the Weibayes and MCMC 

approaches, when the a priori knowledge is not supported by the available evidence.  

The application of the Weibayes approach when considering a one-sided 63% lower confidence 

bound on the scale parameter yields  

0.63

Weib
 14007    (27) 

The MCMC bayesian analysis has been performed with the following prior distributions: 

• The generalized improper Jeffery prior distribution of Equation 26, with hyper-parameter 2a   

• For the shape parameter, we have chosen a distribution centered on β=0.70, with a probability 

mass of 0.8 uniformly distributed between [0.5, 0.9] (i.e., symmetrically on β=0.70), a 

probability mass of 0.1 uniformly distributed in [0, 0.5], whereas the remaining probability 

mass of 0.1 is uniformly distributed in [0.9, 6]. This choice is justified by the following 

considerations:  

o To exploit the assumed biased prior knowledge, we have put a large portion of 

probability on the interval [0.5, 0.9] that encompasses the value ˆ
Weib

  0.70.  

o The prior distribution leaves a relatively small portion of probability in the remaining 

parts of the interval [0,6]. This is consistent with our prior knowledge: we assume that 

values in [0,6] are plausible values for parameter β. 

To draw samples from the posterior distribution ( , | ),   D  the ARWMH algorithm described in 

Section 3 has been run for 5000000 M   iterations with variables 
0 0 0
, ,  ρ  

0
Σ , and 

0
 initialized as 

reported in Table 1. Then, we have applied:  

1) a burn-in of 1,000,000 samples. 

2) a thinning of 50 samples. 

By so doing, the cardinality of the original Markov chains has reduced from 4,000,000 to M 80000 

sample points. We have also checked the shape of the trace plots, and applied the two diagnostic 

methods ESS, and Geweke tests. For brevity, these are not reported. Figures 7 and 8 show the KDE 

(red dash line) and the EH of ( | )  D  and ( | )  D , respectively, whereas the information in the 

posterior distribution is summarized by in Table 5 and Table 6. 



In this biased case study, the estimations of Weibayes and MCMC methods are very different from 

each other. On the contrary, the estimations of the MCMC approach for the two different a priori 

settings are not very far. 

This seems to suggest that the MCMC method offers more robustness than the Weibayes approach, 

as the Bayesian framework allows adjusting the initial estimation of β, even if it is not consistent with 

the gathered evidence. On the contrary, the possibility of adjusting the prior estimation based on the 

gathered evidence is not offered by the Weibayes method. This may constitute a limitation for the 

Weibayes method, as it leads to provide wrong results if the value of the shape parameter is not 

correctly set. On the other side, this disadvantage is counter-balanced by the fact that Weibayes is 

simpler and faster than MCMC. However, additional research work needs to be carried out both to 

investigate under which conditions and to which extent Bayesian framework results to be more 

flexible than Weibayes, and to explore the sensitivity of the accuracy of the results the two methods 

to the dataset cardinality, information content of the prior knowledge, etc. 

 

 

Figure 5: KDE and EH of posterior pdf ( | )  D  

 

Figure 6: KDE and EH of posterior pdf ( | )  D  
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ˆ
mean

  ˆ
med

   ,0.90 5.9 ,0.95 5

sup
,

inf
CI c c 

   
,0.63

Lowerc
  

1573 1322 (651.47, 3883) 1123 

Table 5: Posterior mean ( ˆ
mean

 ), posterior median ( ˆ
med

 ), 95% CI (
0.95CI ) and the-one sided 63% lower 

credibility bound (
,0.63

Lowerc


 ) for scale parameter   

ˆ
mean

  ˆ
med

   ,0.90 5.9 ,0.95 5

sup
,

inf
CI c c 

   
,0.63

Lowerc
  

3.7967 4.0761 
(0.6901, 5.9106) 

3.4740 

 

Table 6: Posterior mean ( ˆ
mean

 ), posterior median ( ˆ
med

 ), 95% CI (
0.95CI ) and the-one sided 63% lower 

credibility bound (
,0.63

Lowerc


)for scale parameter   

5 CONCLUSION 

In this work, we have considered the realistic problem in reliability analysis of Weibull parameter 

estimations when the collected field data contain right-censored times only. The Weibayes method 

and the Bayesian approach have been applied to a real industrial case study concerning data of GT 

forced outages due to a mechanical failure of a component. This application has shown that the two 

methods provide the same value for the shape parameter, but different values for the scale parameters.  
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