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Abstract 

We consider a three-state continuous-time semi-Markov process with Weibull-distributed transition times 

to model the degradation mechanism of an industrial equipment. To build this model, an original 

combination of techniques is proposed for building a semi-Markov degradation model based on expert 

knowledge and few field data within the Bayesian statistical framework. The issues addressed are: i) the prior 

elicitation of the model parameters values from experts, avoiding possible information commitment; ii) the 

development of a Markov-Chain Monte Carlo algorithm for sampling from the posterior distribution; iii) the 

posterior inference of the model parameters values and, on this basis, the estimation of the time-dependent 

state probabilities and the prediction of the equipment remaining useful life. The developed Bayesian model 

offers the possibility of updating the system reliability estimation every time a new evidence is gathered. The 

application of the modeling framework is illustrated by way of a real industrial case study concerning the 

degradation of diaphragms installed in a production line of a biopharmaceutical industry.  
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N-RWMH: Normal Random Walk Metropolis-Hastings algorithm 

PDF: Probability Density Function 

RUL: Remaining Useful Life 

 

1 Introduction 
Multi-state degradation modelling is based on the discretization of the degradation process affecting an 

industrial equipment in three or more states, each one associated to a certain range of values of suitable 

degradation indicator variables (e.g., oxidized areas in gas turbine nozzle systems (Compare et al., 2015), 

electrical resistance values in electrical power switches (Baraldi et al., 2013b), linear extent of wear in bearing 

shells (Moghaddas & Zuo, 2013; Moghaddas et al., 2015)), performance levels (e.g., amount of power 

supplied by power generating systems (Liu et al., 2015)) or symptoms (e.g., vibrational signals (Baraldi et al., 

2014a)). The main advantage of this modeling approach over the widely used binary model (i.e., considering 

only two operational states for the equipment, ‘good’ and ‘failed’) lies in its ability of more accurately 

describing the sequential phases of degradation, which can be even physically different (Levitin et al., 2003; 

Lisnianski & Levitin, 2003; Zuo et al., 2001). 

The transition times from one state to another are often assumed to be Weibull-distributed (e.g., Giorgio et 

al., 2011; Moghaddas & Zuo, 2012; Baraldi et al., 2013a). This choice is due to the flexibility of the Weibull 

distribution and the possibility it gives of keeping memory of the time spent in a degradation state, which 

influences the next stochastic transition time. This property gives rise to a semi-Markov model (Limnios & 

Oprisan,2001). 

The estimation of the model parameters and the characterization of the corresponding uncertainties are 

fundamental to properly set and use multi-state degradation models. To do this, different approaches have 

been proposed in the literature, which mainly depend on the available knowledge, information and data. 

Namely, when a substantial amount of collected data is available, techniques from statistical analysis can be 

adopted, which may be purely analytical (e.g., Giorgio et al., 2011) or numerical (e.g., Compare et al., 2015).  

On the contrary, situations characterized by scarcity of data are common in industrial applications (e.g., very 

highly reliable components, new technology just introduced in the production system, etc.). In this case, 

expert opinion becomes a valuable source of information to be taken into account for developing semi-

Markov degradation models. Different approaches have been proposed within probabilistic and non-

probabilistic theoretical frameworks. Probabilistic approaches (e.g., Chirister et al., 1995; Christer et al., 1998; 

Jenkinson, 2005) are typically based on the elicitation of subjective expert judgements about the probabilities 

of occurrence of single events or about the probability distributions of uncertain quantities of interest. Often, 

the elicitation process is oriented to obtain a suitable prior distribution to be updated in light of the available 

data, according to the Bayesian paradigm (e.g., Coolen, 1996; Singpurwalla & Song, 1988; Garthwaite et al., 

2005). On the other side, within the non-probabilistic approaches, Possibility Theory has been used to tackle 

the situation in which the knowledge on each Weibull parameter is available in terms of a set of nested 

intervals with corresponding confidence levels provided by an expert (Baraldi et al., 2013c; Baraldi et al., 

2014b;). Similarly, Dempster-Shafer theory of Evidence has been applied to develop a semi-Markov 

degradation model in the situation in which an interval that is believed to contain the unknown parameter 
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value is asked to each member of a team of experts (Baraldi et al., 2013a). Fuzzy logic has also been used 

with the same aim in (Ge & Asgarpoor, 2010).  

In this work, we want to build a semi-Markov degradation model in an intermediate situation between that 

of having a sizeable amount of field data (which would justify the application of traditional statistical 

techniques in the frequentist probability framework) and the opposite, of no data available (which has been 

treated with non-probabilistic techniques that avoid information commitment). The objective is to fully 

exploit all the available sources of information in a coherent and solid way. 

To do this, we resort to the Bayesian statistics framework, which allows combining the prior knowledge of 

experts with the evidence coming from field data to build a degradation model useful for maintenance 

applications (Compare & Zio, 2014). The proposed methodology allows the elicitation of the prior 

distributions of the model parameters, avoiding possible commitment of the information provided by the 

expert. Then, an adaptive Markov Chain Monte Carlo algorithm is developed to estimate the posterior 

distributions of the multi-state model parameters, which encode both the prior knowledge and the evidence 

brought by the available dataset. Finally, the developed stochastic model is used to derive the expected 

probabilities of occupying the degradation states over time for new components along with the 

corresponding credibility intervals, and to estimate the remaining useful life of a new component, which will 

be detected in a given degradation state after a certain working time. 

The proposed procedure is applied to a case study in the biopharmaceutical industry, concerning the 

Ethylene Propylene Diene Monomer (EDPM) diaphragm installed within a production line of a company 

leader in that field.  

The original contribution of the proposed method mainly lies in 1) the original combination of techniques, 

taken from the scientific literature of different contexts, which have been adapted to propose a 

comprehensive development pathway for building a semi-Markov degradation model based on expert 

knowledge and few field data, 2) the use of a Bayesian semi-Markov degradation model to support 

maintenance planning. 

Furthermore, within the proposed framework for the construction of the Bayesian semi-Markov degradation 

model, we have developed a novel procedure to sample multiple parameters from their joint posterior 

distribution. The procedure is based on the combined use of i) an adaptive Markov Chain Monte Carlo 

(MCMC) algorithm to set possibly acceptable values for the entries of the covariance matrix and ii) the 

Normal-Random Walk Metropolis Hastings (N-RWMH).  

An important property of the proposed framework for supporting maintenance planning is that it allows 

updating the posterior parameter distribution taking into account the outcome of the last inspection 

performed on the industrial component under observation. This additional updating is useful in those 

situations characterized by scarcity of data, where adding a single observation can significantly improve the 

parameter estimation. 

The remainder of the paper is organized as follows. Section 2 introduces the case study motivating the 

development of the proposed framework. Section 3 defines the assumptions at the basis of the model 

development. Section 4 illustrates the development of the whole methodology, from the elicitation of the 

prior distribution to the posterior inference. This is applied to the EDPM diaphragms in Section 5, where the 

results of the study are also discussed. Some final considerations about the applicability of the proposed 

framework to other case studies are drawn in Section 6. Section 7 concludes the paper. 
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2 Case study motivating the framework development 
The case study motivating the development of the proposed methodological framework concerns the 

gradual degradation of Ethylene Propylene Diene Monomer (EPDM) diaphragms used in the production line 

of a pharmaceutical company, where they are subject to harsh environmental conditions. The EDPM 

diaphragm is the sealing element in flow control valves whose function is to maintain the integrity of the 

hermetically sealed environments within production bioreactors. Severe degradation states of EPDM 

diaphragms may result in undesired contaminations leading to a complete loss of recent production. 

According to maintenance operators’ practice, the degradation of EPDM diaphragms can be modeled using 

a three-state model, where each state corresponds to a different level of damage:  

 state 1 – the component shows mild discolouration, melting and weir markings 

 state 2 – the component shows signs of more severe melting, material flow, and surface creasing 

 state 3 – the component shows melting, material flow, and material creasing is evident. 

A dataset is available, containing the time at which 109 diaphragms have been replaced and the 

corresponding identified state of degradation (Table 1). It contains 73 components replaced when they were 

in state 1, 32 in state 2 and 4 in state 3. The detection of a component in the third (and last) degradation 

state is quite rare, since this corresponds to a failure. Notice that the identification of the degradation state 

of the EPDM diaphragms requires to perform a destructive test on the component. 

In addition to the evidence available in the dataset, we have the possibility of interviewing an expert to gather 

additional information for properly setting the degradation model parameters. 

Table 1. The available dataset 

#Diaphragm Replacement time Degradation state 

1 16.4 1 

2 26.7 1 

… … … 

N 173 2 

 

3 Modeling assumptions  
In this work, we frame the case study illustrated above as a general parameter estimation problem in which 

we want to exploit all the available knowledge, information and data (Zio, 2016). For this, we first build a 

methodological framework and then we give some practical advices to readers interested in implementing 

the proposed procedure on other datasets. 

We consider a three-state process (Figure 1), where: 

 State 1 refers to a new or mildly degraded component; 

 State 2 refers to a fairly degraded component; 

 State 3 refers to a heavily degraded component. 

It is assumed that direct transitions from state 1 to state 3 are not possible, which is typical of degradation 

processes caused by cumulative damage (Ruiz-Castro, 2014; Compare et al., 2015). The stochastic transition 

times from state 1 to 2 and from state 2 to 3 are indicated by 𝑇1 and 𝑇2, respectively. The first transition time 
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is assumed to obey a Weibull distribution conditional on the random parameters 𝛼1 (scale) and 𝛽1 (shape), 

whereas the second transition time is Weibull-distributed, conditional on the random parameters 𝛼2 and 𝛽2. 

 

 

 

 

Figure 1. Three-state model of the degradation process 

We assume that a dataset (𝒓, 𝒅) = {(𝑟𝑛, 𝑑𝑛)}𝑛=1,…,𝑁  is available, containing 𝑁 observations. The two entries 

(𝑟𝑛, 𝑑𝑛) for the generic 𝑛-th record, 𝑛 = 1, … , 𝑁, are the replacement time (𝑟𝑛, i.e., the time elapsed from 

the component installation to its replacement) and the corresponding degradation state 𝑑𝑛. It is also 

assumed that each component has been replaced after inspection; that is, every record refers to a different 

component. 

The stochastic transition times from state 1 to 2 and from state 2 to 3 of the 𝑛𝑡ℎ component, 𝑛 = 1, … , 𝑁 are 

indicated by 𝑇1𝑛 and 𝑇2𝑛, respectively. In particular, 𝑇1𝑛, 𝑛 = 1, … , 𝑁 are considered as random variables 

independent and identically distributed (i.i.d.) as 𝑇1, conditional on the parameters 𝛼1 and 𝛽1. Similarly, 𝑇2𝑛, 

𝑛 = 1, … , 𝑁 are random variables independent and identically distributed as 𝑇2, conditional on 𝛼2 and 𝛽2. 

Obviously, if the 𝑛𝑡ℎ component is found in degradation state 𝑑𝑛 = 1, then it has not experienced the first 

nor the second transition. However, this does not mean that the stochastic transition times 𝑇1𝑛 and 𝑇2𝑛 do 

not exist; rather, it means that the replacement time 𝑟𝑛 has worked like a censoring time preventing the 

component from reaching states 2 and 3. In this respect, we assume that 𝑟𝑛 is a random variable independent 

from both 𝑇1𝑛 and 𝑇2𝑛. This assumption requires that the choice of the replacement time for each component 

in the dataset is not influenced by any information eventually collected during the component life (ongoing 

detections, measurements, etc.), which could reveal, directly or indirectly, the evolution of its degradation 

state. The same reasoning applies to a component found in degradation state 𝑑𝑛 = 2. 

These assumptions allow us considering the following Bayesian model:  

 {
  𝑇11, … , 𝑇1𝑁|𝜽   ~𝑖.𝑖.𝑑.   𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼1, 𝛽1), 𝑇21, … , 𝑇2𝑁|𝜽   ~𝑖.𝑖.𝑑.   𝑊𝑒𝑖𝑏𝑢𝑙𝑙(𝛼2, 𝛽2)

𝜽 ∶= (𝛼1, 𝛽1, 𝛼2, 𝛽2) ~ 𝜋(𝜽)
 (1) 

where 𝛼1, 𝛽1, 𝛼2, 𝛽2 are random variables, arranged in the parameter vector  𝜽 ∈ Θ ∶= (ℝ+)𝑤, 𝑤 = 4, with 

joint prior probability distribution 𝜋(𝜽). Additional assumptions are: 

 𝑇1𝑛|𝛼1, 𝛽1 is independent from 𝑇2𝑛|𝛼2, 𝛽2 ∀ 𝑛 = 1, … , 𝑁. That is, the second transition time is not 

influenced by the first one; rather, it is influenced by the sojourn time in state 2. 

 The two random vectors (𝛼1, 𝛽1) and (𝛼2, 𝛽2) are a priori independent, i.e., we assume that the 

expert can give two different a priori distributions for these two pairs of parameters. 

𝑇1 𝑇2 
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4 Method development 

4.1 Prior elicitation 
In the Bayesian analysis framework, the first important issue to address is the assignment of prior 

distributions to the model parameters. These distributions can be built starting either from data available 

from similar phenomena/experiments (Epifani et al., 2014) or from the opinions of experts (Bousquet, 2010). 

Otherwise, in complete absence of information, non-informative priors are used (e.g., Kass & Wasserman, 

1996).  

As mentioned in Section 2, we consider the case in which data for setting the priors are not available and, 

thus, we have to rely on the judgements of experts. In general, particular attention must be paid in eliciting 

the information from experts to avoid possible commitments; thus, the questions used to interview the 

experts should not be formulated in such a way that the answers are biased (Garthwaite et al., 2005).  

In our case study, a set of preliminary interviews with the expert led us to consider the elicitation procedure 

proposed in (Bousquet, 2010), which is illustrated for the transition time 𝑇1 only, the case of 𝑇2 being 

analogous. 

In the case of Weibull distributions, experts are expected to be more naturally led to convey information 

about the transition times, rather than about the scale and shape parameters, because these have not a 

straightforward physical interpretation (Bousquet, 2010). For this, the statistical information to be elicited 

directly concerns the prior predictive distribution, whose probability density function (PDF), in the case of 𝑇1, 

reads: 

 𝑓𝜋(𝛼1,𝛽1)(𝑡1) = ∫ 𝑓(𝑡1|𝛼1, 𝛽1)𝜋(𝛼1, 𝛽1)𝑑𝛼1𝑑𝛽1

ℝ+×ℝ+

 (2) 

 

where 𝜋(𝛼1, 𝛽1) is the marginal prior distribution to be elicited. According to (Bousquet, 2010), the expert is 

asked to provide estimates for a certain number ℎ1 of quantiles for the transition time 𝑇1. Specifically, he/she 

is required to provide a set of pairs {(𝑠𝑖, 𝑞𝑖)}𝑖=1,…,ℎ1
 with 0 < 𝑠𝑖 < 𝑠𝑖+1, 0 < 𝑞𝑖 < 𝑞𝑖+1 < 1 ∀ 𝑖 = 1, … , ℎ1 −

1 answering to these ℎ1 explicit questions: 

 

“In your opinion, after how much working time 𝑠𝑖 do you expect to find that exactly (𝑞𝑖 × 100)% of the 

components have undergone the transition from state 1 to state 2?” ,     

 

where the values 𝑞𝑖 can also be proposed directly by the analyst.  

The marginal prior distribution 𝜋(𝛼1, 𝛽1) to be elicited is that one which possibly solves all the ℎ1 equations: 

In general, there may not be a distribution 𝜋(𝛼1, 𝛽1) able to exactly fulfill all the ℎ1 Eqs. (3). Conversely, 

there is the possibility of satisfying exactly at least one of them. Thus, the expert can be finally asked to select 

among {(𝑠𝑖, 𝑞𝑖)}𝑖=1,…,ℎ1
 the pair (𝑠𝑖̅, 𝑞𝑖̅) which he/she feels more confident of. This is named Most 

Trustworthy Specification (MTS), and it is usually expected that 𝑞𝑖̅ is too close neither to 0 nor to 1, as the 

  𝑃𝜋(𝛼1,𝛽1)(𝑇1 ≤ 𝑠𝑖) = ∫ 𝑓𝜋(𝛼1,𝛽1)(𝑡1)
𝑠𝑖

0

𝑑𝑡1 = 𝑞𝑖 , 𝑖 = 1, … , ℎ1 (3) 
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expert knowledge for central quantiles is usually better than that for those extremes (Garthwaite et al., 

2005). The elicitation procedure, illustrated below, utilizes the MTS to ensure that 𝜋(𝛼1, 𝛽1) exactly satisfies:  

 𝑃𝜋(𝛼1,𝛽1)(𝑇1 ≤ 𝑠𝑖̅) = ∫ 𝑓𝜋(𝛼1,𝛽1)(𝑡1)
𝑠�̅�

0

𝑑𝑡1 = 𝑞𝑖̅  (4) 

According to (Bousquet, 2010), we can consider the marginal prior distribution 𝜋(𝛼1, 𝛽1) as the posterior 

distribution that derives from the updating of the non-informative improper Jeffreys prior (Kass & 

Wasserman, 1996)  

 𝜋𝐽(𝛼1, 𝛽1) ∝  𝛼1
−1𝕀{𝛼1>0}𝕀{𝛽1>𝛽1

0} (5) 

(where 𝕀 denotes the indicator function) on the basis of a virtual sample �̃�𝑚1
= (�̃�1, … , �̃�𝑚1

) of 𝑚1 i.i.d. 

uncensored observations of 𝑇1, which are consistent with the expert opinions {(𝑠𝑖, 𝑞𝑖)}𝑖=1,…,ℎ1
  (Figure 2). 

Notice that the value of 𝛽1
0 ≥ 0 has to be fixed according to the phenomenon under study, whereas the value 

of 𝑚1 is derived from the optimization procedure described below. 

 

Figure 2. Scheme of the complete procedure 

 

 

The application of the Bayes theorem yields:  

 

𝜋(𝛼1, 𝛽1) = 𝜋𝐽(𝛼1, 𝛽1|�̃�𝑚1
) ∝ 𝑓(�̃�𝑚1

|𝛼1, 𝛽1)𝜋𝐽(𝛼1, 𝛽1) =

= ∏
𝛽1

𝛼1

𝑚1

𝑖=1

(
�̃�𝑖

𝛼1
)

𝛽1−1

exp (− (
�̃�𝑖

𝛼1
)

𝛽1

) 𝛼1
−1𝕀{𝛼1>0}𝕀{𝛽1>𝛽1

0} 
(6) 
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Eq. (6) can be handled as in (Bousquet, 2010) to get: 

 𝜋(𝛼1, 𝛽1) = 𝜋(𝛼1|𝛽1)𝜋(𝛽1) (7) 

where: 

 

 𝜋(𝛼1|𝛽1) obeys to the Generalized Inverse Gamma (GIG) distribution, whose PDF is:  

 𝜋(𝛼1|𝛽1)~𝐺𝐼𝐺(𝑚1, 𝑏, 𝛽1)  =
𝑏𝑚1𝛽1

Γ(𝑚1)

1

𝛼1
𝑚1𝛽1+1

exp (−
𝑏

𝛼1
𝛽1

) 𝕀{𝛼1>0} (8) 

 

 𝜋(𝛽1) is the left-truncated Gamma distribution, whose PDF is:  

 

where [1 − 𝐹𝛽1
(𝛽1

0)] is the normalizing constant: 

1 − 𝐹𝛽1
(𝛽1

0) = ∫
1

Γ(𝑚1)
(

𝑚1

𝑐1
)

𝑚1

𝛽1
𝑚1−1exp (−

𝑚1

𝑐1
𝛽1) 𝑑𝛽1

∞

𝛽1
0

 

 𝑏 = 𝑏(𝑚1, 𝛽1) = ((1 − 𝑞𝑖̅)
− 1

𝑚1 − 1)
−1

∙ 𝑠𝑖̅
𝛽1 enters Eq. (8), and assures that the elicited prior 

exactly satisfies Eq. (4) (Bousquet, 2010); 

 𝑚1 and 𝑐1 are hyper-parameters to be properly fixed.   

 

According to (Bousquet, 2010), the hyper-parameter 𝑚1 could be set equal to the number of transition times 

𝑇1 observed by the expert, which are at the basis of his/her belief. This would be equivalent to the size of the 

virtual sample entering the procedure described above. Thus, if these earlier observations were all 

uncensored, then it would be sufficient to ask the expert the number of these observations and set 𝑚1 to 

such value. Once 𝑚1 is fixed, the calibration of 𝑐1(𝑚1) can be performed by minimizing the discrete Kullback-

Leibler loss function between a generic PDF 𝑓 of 𝑇1, satisfying the specifications {(𝑠𝑖, 𝑞𝑖)}𝑖≠𝑖̅, and the 

predictive PDF 𝑓𝜋 associated to the marginal prior distribution 𝜋(𝛼1, 𝛽1) (Bousquet, 2010): 

 

 

𝒟𝑚1
(𝑓, 𝑓𝜋) = ∑ [(𝑞𝑖+1 − 𝑞𝑖) log

𝑞𝑖+1 − 𝑞𝑖

𝑞𝑖+1
(𝑒)

− 𝑞𝑖
(𝑒)

] +

𝑖−̅2

𝑖=0

 

+(𝑞𝑖+̅1 − 𝑞𝑖−̅1) log
𝑞𝑖+̅1 − 𝑞𝑖−̅1

𝑞𝑖+̅1
(𝑒)

− 𝑞𝑖−̅1
(𝑒)

+ ∑ [(𝑞𝑖+1 − 𝑞𝑖) log
𝑞𝑖+1 − 𝑞𝑖

𝑞𝑖+1
(𝑒)

− 𝑞𝑖
(𝑒)

]

ℎ1

𝑖=𝑖+̅1

 

(10) 

 

 

𝜋(𝛽1)~𝐺 (𝑚1,
𝑚1

𝑐1
 ) 𝕀{𝛽1>𝛽1

0} =

= [1 − 𝐹𝛽1
(𝛽1

0)]
−1

∙
1

Γ(𝑚1)
(

𝑚1

𝑐1
)

𝑚1

𝛽1
𝑚1−1exp (−

𝑚1

𝑐1
𝛽1) 𝕀{𝛽1>𝛽1

0} 
(9) 
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where:  

  𝑠0 = 0, 𝑠ℎ1+1 = ∞, 𝑞0 = 𝑞0
(𝑒)

= 0, 𝑞ℎ1+1 = 𝑞ℎ1+1
(𝑒)

= 1 (11) 

  𝑞𝑖
(𝑒)

= ∬ 𝐹𝑇1
(𝑠𝑖|𝛼1, 𝛽1)𝜋(𝛼1|𝛽1)𝜋(𝛽1)

ℝ+×ℝ+

𝑑𝛼1𝑑𝛽1 ∀𝑖 = 1, … , ℎ1 (12) 

However, in the situation considered in this paper, the expert does not know exactly the time 𝑇1 at which 

transitions have occurred. Rather, he/she knows the state of the component at the inspection times. The 

worth of this observation is smaller than that of an uncensored transition. To give due account to this, the 

size 𝑚1 of the virtual sample must be smaller than the number of earlier observations seen by the expert and 

is very difficult to quantify. To overcome the issue, a joint calibration of the pair (𝑚1, 𝑐1) can be made via the 

following algorithm, proposed in (Bousquet, 2010).  

 

I. Consider a set 𝑀1 of possible values of 𝑚1. 

II.  ∀𝑚1 ∈ 𝑀1 find 𝑐1
∗(𝑚1) ∶=  arg min

𝜋(⋅ |𝑐1(𝑚1))
𝒟𝑚1

(𝑓, 𝑓𝜋) 

III. find 𝑚1
∗ ∶= arg min

𝑚1≥0
𝒟𝑚1

(𝑓, 𝑓𝜋(⋅|𝑐1
∗(𝑚1)))  

IV. set 𝑚1 = 𝑚1
∗   

V. set 𝑐1 = 𝑐1
∗(𝑚1

∗)  

 

Figure 3: Steps of the Joint calibration procedure 

 

As suggested in (Bousquet, 2010), to efficiently solve the minimization problem at step II, the golden section 

search method combined with parabolic interpolation (Brent, 1973) is used, where the terms 𝑞𝑖
(𝑒)

 are 

estimated by substituting Eq. (8) and Eq. (9) in Eq. (12). After some manipulations, Eq. (12) becomes: 

 𝑞𝑖
(𝑒)

= 1 − ∫ (1 + [(1 − 𝑞𝑖̅)
− 1

𝑚1 − 1] (
𝑠𝑖

𝑠𝑖̅
)

𝛽1

)

−𝑚1

𝜋(𝛽1)

+∞

𝛽1
0

𝑑𝛽1. (13) 

Then, the terms 𝑞𝑖
(𝑒)

 can be estimated by applying the Monte-Carlo method (Zio, 2013): 

 𝑞𝑖
(𝑒)

≈ 1 −
1

𝐾
∑ (1 + [(1 − 𝑞𝑖̅)

− 1
𝑚1 − 1] (

𝑠𝑖

𝑠𝑖̅
)

𝛽1
(𝑘)

)

−𝑚1𝐾

𝑘=1

, (14) 

where (𝛽1
(1), … , 𝛽1

(𝐾)
) are 𝐾 i.i.d. samples from the truncated gamma distribution in Eq. (9), with 𝐾 ≫ 1. 

Notice that, once step II is taken, steps III – IV – V are straightforward. Notice also that the unicity of the 

solution (𝑚1
∗ , 𝑐1

∗(𝑚1
∗)) is guaranteed by the convexity of the loss function 𝒟 with respect to 𝜋, along with 

the one-to-one continuous correspondence between 𝜋(𝛽1|𝑐1(𝑚)) and 𝑐1(𝑚) (Bousquet, 2010). At the end 

of the calibration, one should verify whether the differences between the quantiles of the elicited prior and 

the correspondent expert specifications are small, possibly below the expert sensitivity degree. If the expert 

believes that the elicited quantiles are not well representative of his/her opinions, the use of a Weibull model 

should be reconsidered. 

Large values of 𝑚1 relate to an a priori distribution derived from updating the Jeffreys prior with a large 

number of data. For this, optimization procedures yielding large values of 𝑚1 are indicative of informative 

priors.   
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Finally, all the considerations discussed in this Section apply also to 𝑇2, including the calibration procedure. 

Additional details about the elicitation procedures can be found in (Garthwaite et al., 2005), where some 

methods, often based on psychological studies, for successfully asking and eliciting the information from the 

experts are reviewed.  

 

4.2 Posterior Distributions 
In this Section, a Markov Chain Monte Carlo (MCMC, Robert & Casella, 2004) algorithm is developed to 

estimate the posterior distributions of the model parameters. MCMC is a family of algorithms that allow 

drawing samples from a probability distribution 𝜋(𝜽|𝒓, 𝒅) (usually referred to as target distribution), which 

are produced by an ergodic Markov chain. 

Under the assumptions mentioned in Section 2, the contribution 𝐿(𝑟𝑛, 𝑑𝑛|𝜽) of the 𝑛𝑡ℎ observation to the 

likelihood function 

 𝐿(𝒓, 𝒅|𝜽) = ∏ 𝐿(𝑟𝑛, 𝑑𝑛|𝜽)

𝑁

𝑛=1

 (15) 

is such that: 

 if 𝑑𝑛 = 1, 𝐿(𝑟𝑛, 𝑑𝑛|𝜽) is the probability of the event {𝑇1𝑛 > 𝑟𝑛|𝜽}: 

 𝐿(𝑟𝑛, 𝑑𝑛 = 1|𝜽) = 1 − 𝐹𝑇1
(𝑟𝑛|𝛼1, 𝛽1) (16) 

where 𝐹𝑇1
 is the Cumulative Distribution Function (CDF) of the random variable 𝑇1| 𝛼1, 𝛽1. (Notice 

that this outcome does not provide any useful information about the realization of 𝑇2). 

 

 If 𝑑𝑛 = 2, 𝐿(𝑟𝑛, 𝑑𝑛|𝜽) is the probability of the event {𝑇1𝑛 ≤ 𝑟𝑛 𝑎𝑛𝑑 𝑇1𝑛 + 𝑇2𝑛 > 𝑟𝑛|𝜽}: 

 𝐿(𝑟𝑛, 𝑑𝑛 = 2|𝜽) = ∫ [1 − 𝐹𝑇2
(𝑟𝑛 − 𝜏|𝛼2, 𝛽2)]𝑓𝑇1

(𝜏|𝛼1, 𝛽1)𝑑𝜏
𝑟𝑛

0

 (17) 

where 𝑓𝑇1
 is the PDF of 𝑇1| 𝛼1, 𝛽1, whereas 𝐹𝑇2

 is the CDF of 𝑇2| 𝛼2, 𝛽2. 

 

 If 𝑑𝑛 = 3, 𝐿(𝑟𝑛 , 𝑑𝑛|𝜽) is the probability of the event {𝑇1𝑛 + 𝑇2𝑛 ≤ 𝑟𝑛|𝜽}: 

 𝐿(𝑟𝑛, 𝑑𝑛 = 3|𝜽) = ∫ 𝐹𝑇2
(𝑟𝑛 − 𝜏|𝛼2, 𝛽2)𝑓𝑇1

(𝜏|𝛼1, 𝛽1)𝑑𝜏
𝑟𝑛

0

 (18) 

The application of the Bayes theorem yields the following posterior distribution: 

 𝜋(𝜽|𝒓, 𝒅) ∝ ∏ 𝐿(𝑟𝑛, 𝑑𝑛|𝜽)

𝑁

𝑛=1

𝜋(𝜽) (19) 

 



11 
 

Finally, notice that it is not possible to decompose the likelihood function in the form 𝐿(𝒓, 𝒅|𝜽) =

𝐿(𝒓, 𝒅|𝛼1, 𝛽1)𝐿(𝒓, 𝒅|𝛼2, 𝛽2), being the random vectors (𝛼1, 𝛽1) and (𝛼2, 𝛽2) not a-posteriori independent.  

4.2.1 Random Walk Metropolis-Hastings algorithm 

 

In this work, a Normal Random Walk Metropolis-Hastings (N-RWMH, Robert & Casella, 2004) algorithm is 

used to obtain samples from the posterior distribution  𝜋(𝜽|𝒓, 𝒅) of the model parameters. Formally, we 

indicate by Θ = (ℝ+)𝑤 the state space, by 𝔅(Θ) the Borel 𝜎-algebra on Θ and by 𝑞(⋅ ; 𝝁, Σ) = 𝒩(⋅ ; 𝝁, Σ) a 

normal proposal density with mean 𝝁 and covariance matrix Σ. The transition probability of the N-RWMH 

algorithm from the current state 𝜽 ∈ Θ to a set 𝐸 ∈ 𝔅(Θ) is given by: 

 

 𝑃𝑞Σ
(𝜽, 𝐸) =  ∫ 𝜉(𝜽, 𝝂)𝑞(𝝂; 𝜽, Σ)𝑑𝝂

𝐸

+ (1 − ∫ 𝜉(𝜽, 𝝂)𝑞(𝝂; 𝜽, Σ)𝑑𝝂

Θ

) 𝕀{𝜽∈𝐸} (20) 

where 𝝂 is the integration variable and 𝜉(𝜽, 𝝂) = min (1,
𝜋(𝝂|𝒓,𝒅)

𝜋(𝜽|𝒓,𝒅)
).  

The Markov chain defined by Eq. (20) has, under appropriate assumptions (e.g., Gilks at al., 1996),  𝜋(𝜽|𝒓, 𝒅) 

as its unique invariant distribution. A desired number 𝐺 of steps of this Markov chain can be simulated by 

the following well known procedure (e.g., Jackman, 2009): 

 

 Choose a (symmetric positive definite) covariance matrix Σ ∈ ℝ𝑤×𝑤 and set an initial state 𝜽(0) ∈ Θ 

 for 𝑔 = 1, … , 𝐺: 

1. sample a candidate new state 𝜽∗ from 𝑞(⋅ ; 𝜽(𝑔−1), Σ) 

2. set φ =
𝜋(𝜽∗|𝒓,𝒅)

𝜋(𝜽(𝑔−1)|𝒓,𝒅)
 by using Eq. (19) 

3. set 𝜉 = min (1, 𝜑) 

4. sample 𝑈 ∼ 𝑈𝑛𝑖𝑓(0,1) 

5. if 𝑈 ≤ 𝜉 

  set 𝜽(𝑔) = 𝜽∗ 

           else 

                set 𝜽(𝑔) = 𝜽(𝑔−1) 

           end if 

                end for 

The proper setting of the entries of the covariance matrix Σ is fundamental for the algorithm efficiency: small 

values will origin an inefficient algorithm due to a bad mixing of the chain, whereas large values will lead to 

an excessively low acceptance rate (step 5 of the algorithm above).  

If there were only one parameter to be estimated, the definition of the variance Σ could have been done via 

a trial-and-error procedure: the variance is increased if the acceptance ratio is too low and reduced 

otherwise, until a satisfactory value is found. In this respect, (Gelman et al., 1996) suggests the optimal 

acceptance rate is about 0.44 for 𝑑 = 1 and 0.234 for 𝑑 → +∞.  

On the contrary, we consider the situation in which there are four parameters. In this case, the task of 

calibrating Σ becomes harder, and one can resort to an adaptive MCMC algorithm. 
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In this work, the following version by (Andrieu & Thoms, 2008) of the adaptive algorithm (A-MCMC) described 

in (Haario et al., 2001) is employed: 

 

 initialize 𝜽(0) ∈ Θ, initialize 𝜼(0) = 𝟎 ∈ ℝ𝑤 and a (symmetric positive definite) covariance matrix 

Σ(0) ∈ ℝ𝑤×𝑤 

 for 𝑠 = 1, … , 𝑆 

1. sample a candidate new state 𝜽∗ from 𝑞(⋅ ; 𝜽(𝑠−1), 𝜆Σ(𝑠−1)) 

2. set 𝜑 =
𝜋(𝜽∗|𝒓,𝒅)

𝜋(𝜽(𝑠−1)|𝒓,𝒅)
 

3. set 𝜉 = min (1, 𝜑) 

4. sample 𝑈 ∼ 𝑈𝑛𝑖𝑓(0,1) 

5. if 𝑈 ≤ 𝜉 

  set 𝜽(𝑠) = 𝜽∗ 

           else 

                set 𝜽(𝑠) = 𝜽(𝑠−1) 

           end if 

6. update 𝜼(𝑠) = 𝜼(𝑠−1) + 𝛾(𝑠)(𝜽(𝑠) − 𝜼(𝑠−1)) 

7. update Σ(𝑠) = Σ(𝑠−1) + 𝛾(𝑠) ((𝜽(𝑠) − 𝜼(𝑠−1))(𝜽(𝑠) − 𝜼(𝑠−1))
𝑇

− Σ(𝑠−1)) 

              end for 

    where 𝜆 =
(2.38)2

𝑤
, {𝛾(𝑠) =

1

𝑠𝛿}
𝑠=1,…,𝑠

, 𝛿 ∈ ((1 + 𝜆)−1, 1]. 

The stochastic process defined by the A-MCMC algorithm is no longer Markovian, being each step dependent 

on all the past iterations. The loss of the Markov property is a common feature for the majority of adaptive 

algorithms and could undermine the convergence to the target distribution 𝜋(𝜽|𝒓, 𝒅). For this reason, in this 

work we use the adaptive algorithm only to set possibly acceptable values for the entries of the covariance 

matrix of the proposal distribution to be used in the N-RWMH. In practice, the adaptive algorithm is stopped 

after a proper number 𝑆 of iterations, and the states visited by the chain are discarded. Then, the N-RWMH 

is run for 𝐺 iterations, which uses the values of the last covariance matrix Σ(𝑆). 

To set S, one can look at the stability of 𝜼𝑠 and of the covariance matrix Σ(𝑠) over 𝑠: S must be large enough 

that the changes in their values are acceptably small. 

Notice that the integrals in Eqs. (17) and (18) are convolutions of a Weibull PDF with parameters 𝛼1, 𝛽1 with 

the CDF and the complementary CDF of a Weibull distribution with parameters 𝛼2, 𝛽2, respectively. The 

results of these convolutions are not available in closed form; then, we have to numerically compute these 

integrals within both the N-RWMH and A-MCMC algorithms, which is time-consuming. An alternative 

algorithm to estimate the posterior distribution, which avoids numerical estimations to sample from 

𝜋(𝛼1, 𝛽1, 𝛼2, 𝛽2, 𝑇11, … , 𝑇1𝑁, 𝑇21, … , 𝑇2𝑁|𝒓, 𝒅), is the data-augmented Metropolis-within-Gibbs algorithm 

(e.g., Laird, 2013). This latter algorithm may become particularly advantageous if the number of degradation 

states considered in the model increases, as it avoids the numerical estimation of very complex integrals 

(e.g., Compare et al., 2015). However, the method has the potential drawback of dramatically increasing the 

Markov Chain state-space dimension in case of a large number 𝑁 of observations. The application of the 

Metropolis-within-Gibbs algorithm to multi-state degradation modeling and its comparison with N-RWMH 

will be investigated in further works. 



13 
 

 

4.2.2 MCMC diagnostics   

 

Some diagnostic methods are executed on the 𝐺 draws, sampled by the procedure described above, in order 

to check: 

 

1. The convergence of the chain to its invariant distribution, i.e., the posterior 𝜋(𝜽|𝒓, 𝒅). 

2. The algorithm efficiency. 

3. The need of introducing/increasing the burn-in length, i.e., the number of initial iterations that have 

to be discarded as long as the chain is judged to have not yet converged. These samples must be 

removed from the chain, as they may bias the sampling from the posterior distribution.  

 

The diagnostic methods used in this work are traceplots, autocorrelation plots, the Effective Sample Size and 

the Geweke test (e.g., Jackman,2009; Geweke, 1992). Notice that we are considering both qualitative and 

quantitative diagnostics, which are applied separately on the members of the vector 𝜽. More details on the 

employed diagnostic methods can be found in the Appendix.  

4.3 Posterior inference  

Once G samples 𝜽(1), … , 𝜽(𝐺) have been obtained from the posterior 𝜋(𝜽|𝒓, 𝒅), we can use them to predict 

the evolution of the component degradation process. Depending on the maintenance approach, different 

information can be extracted from the posterior distribution of the parameters. 

Scheduled maintenance is typically applied when the identification of the component degradation state 

requires to perform a destructive test. In this case, the component is preventively replaced when it reaches 

a predefined age, which can be set by considering the expected degradation path of a new generic 

component. To this purpose, the following information can be obtained by the obtained Bayesian semi-

Markov model (Section 3.3.1): 

 The probabilities of occupying the three degradation states over time. 

 The distribution of the failure time, i.e., the time until the transition to state 3. 

Differently, a predictive maintenance approach can be applied when there is the possibility of performing a 

non-destructive inspection of the component degradation state. In practice, the component is inspected, its 

degradation state identified and its failure time is predicted using the developed Bayesian semi-Markov 

model (Section 3.3.2). Notice that the stochastic quantity which we are interested in is the Remaining Useful 

Life (RUL), i.e., the remaining time until the transition toward state 3 of the specific component that we have 

observed being in a given state. 

4.3.1 Posterior inference for scheduled maintenance 

With reference to the probability of occupying the degradation states over time, we want to estimate the 

following values: 

 The expected probability of occupying state 1 after working time 𝑡 ≥ 0: 

 𝔼𝜋(𝜽|𝒓,𝒅)[𝑃(𝑇1 > 𝑡|𝜽)] = ∫ (1 − 𝐹𝑇1
(𝑡|𝛼1, 𝛽1)) 𝜋(𝛼1, 𝛽1|𝒓, 𝒅)𝑑𝛼1𝑑𝛽1

ℝ+×ℝ+

 (21) 
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 The expected probability of occupying state 2 after working time 𝑡 ≥ 0: 

 

𝔼𝜋(𝜽|𝒓,𝒅)[𝑃(𝑇1 ≤ 𝑡, 𝑇1 + 𝑇2 > 𝑡|𝜽)] =

= ∫ (∫ [1 − 𝐹𝑇2
(𝑡 − 𝜏|𝛼2, 𝛽2)]𝑓𝑇1

(𝜏|𝛼1, 𝛽1)𝑑𝜏
𝑡

0

) 𝜋(𝜽|𝒓, 𝒅)𝑑𝜽
Θ

 
(22) 

 

 The expected probability of occupying state 3 after working time 𝑡 ≥ 0: 

 𝔼𝜋(𝜽|𝒓,𝒅)[𝑃(𝑇1 + 𝑇2 ≤ 𝑡|𝜽)] = ∫ (∫ 𝐹𝑇2
(𝑡 − 𝜏|𝛼2, 𝛽2)𝑓𝑇1

(𝜏|𝛼1, 𝛽1)𝑑𝜏
𝑡

0

) 𝜋(𝜽|𝒓, 𝒅)𝑑𝜽
Θ

 (23) 

Moreover, we are also interested in estimating a (0.05, 0.95) pointwise credibility band for each of the three 

probabilities, which describes the uncertainty on the estimated probability value. To do this, we first define 

a proper time grid {𝑡𝑗}
𝑗=1,…,𝐽

 at which the quantities in Eqs. (21 − 23) will be calculated, 0 = 𝑡1 < 𝑡2 < ⋯ <

𝑡𝐽. Then, we exploit the MCMC samples to make inference about the probability of occupying the states 

(Christensen et al., 2010). 

For example, with reference to degradation state 1, we create the matrix 

[{1 − 𝐹𝑇1
(𝑡𝑗|𝛼1

(𝑔)
, 𝛽1

(𝑔)
)}

𝑔𝑗
] , 𝑔 = 1, … , 𝐺 , 𝑗 = 1, … , 𝐽  

whose 𝑔𝑡ℎ row contains the 𝐽 values of the Complementary CDF of the random variable 𝑇1|𝜽 = 𝜽(𝑔) 

evaluated on the time grid {𝑡𝑗}
𝑗=1,…,𝐽

. Unbiased estimates of the expected values (over time) in Eq. (21) are 

given by the averages of the values in every matrix column, whereas the (0.05, 0.95) pointwise credibility 

band for the probability of occupying degradation state 1 is defined by the quantiles of order 0.05 and 0.95 

of the columns.  

Similarly, the matrices 

 

[{∫ [1 − 𝐹𝑇2
(𝑡𝑗 − 𝜏|𝛼2

(𝑔)
, 𝛽2

(𝑔)
)] 𝑓𝑇1

(𝜏|𝛼1
(𝑔)

, 𝛽1
(𝑔)

) 𝑑𝜏
𝑡

0

}
𝑔𝑗

] , 𝑔 = 1, … , 𝐺 , 𝑗 = 1, … , 𝐽  

and: 

[{∫ 𝐹𝑇2
(𝑡𝑗 − 𝜏|𝛼2

(𝑔)
, 𝛽2

(𝑔)
)𝑓𝑇1

(𝜏|𝛼1
(𝑔)

, 𝛽1
(𝑔)

) 𝑑𝜏
𝑡

0

}
𝑔𝑗

] , 𝑔 = 1, … , 𝐺 , 𝑗 = 1, … , 𝐽 

are used to make inference about the probability of occupying states 2 and 3, respectively, where their 

entries have to be computed via numerical integration methods. 

Notice that the available gathered evidence for estimating the probabilities in Eqs. (21 − 23) is that of the 

original dataset (𝒓, 𝒅) = {(𝑟𝑛, 𝑑𝑛)}𝑛=1,…,𝑁  of 𝑁 records. 
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4.3.2 Posterior inference for predictive maintenance 

Assume now that a (𝑁 + 1)𝑡ℎ component, currently operating in the production line, is detected in a state 

𝑑𝑁+1 < 3 after a working time 𝑟𝑁+1 > 0. The proposed Bayesian framework allows predicting its RUL to 

support maintenance decisions about the component replacement. To do this, we compute the posterior 

density 𝜋(𝜽|𝒓, 𝒅, (𝑟𝑁+1, 𝑑𝑁+1)), which updates 𝜋(𝜽|𝒓, 𝒅) with the new information contained in the 

observation (𝑟𝑁+1, 𝑑𝑁+1). 

Then, in case 𝑑𝑁+1 = 1, the CDF of the arrival time in state 3, 𝑇1 + 𝑇2, for the (𝑁 + 1)𝑡ℎ component is: 

 

 

𝐹𝑇1+𝑇2
(𝑡|𝒓, 𝒅, (𝑟𝑁+1, 𝑑𝑁+1 = 1)) = 

= ∫ 𝑃(𝑇1 + 𝑇2 ≤ 𝑡|𝒓, 𝒅, (𝑟𝑁+1, 𝑑𝑁+1 = 1), 𝜽)𝜋(𝜽|𝒓, 𝒅, (𝑟𝑁+1, 𝑑𝑁+1 = 1))𝑑𝜽
Θ

 

(24) 

where 

 𝑃(𝑇1 + 𝑇2 ≤ 𝑡|𝒓, 𝒅, (𝑟𝑁+1, 𝑑𝑁+1 = 1), 𝜽) = ∫ 𝐹𝑇2
(𝑡 − 𝜏|𝜽)

𝑓𝑇1
(𝜏|𝜽)

1 − 𝐹𝑇1
(𝑟𝑁+1|𝜽)

𝑡

𝑟𝑁+1

𝑑𝜏 (25) 

 

Eq. (25) derives from the definition of conditional probability, which applies to the first transition time 

distribution, only. From this, the estimation of the RUL can be done through the following procedure: 

1. Draw 𝐺 samples 𝜽𝑢𝑝
(1)

, … , 𝜽𝑢𝑝
(𝐺)

 from the updated posterior distribution 𝜋(𝜽|𝒓, 𝒅, (𝑟𝑁+1, 𝑑𝑁+1 = 1)) 

using the MCMC algorithm. 

2. Compute, via numerical integration methods, the vector of values: 

{∫ 𝐹𝑇2
(𝑡 − 𝜏|𝜽𝑢𝑝

(𝑔)
)

𝑓𝑇1
(𝜏|𝜽𝑢𝑝

(𝑔)
)

1 − 𝐹𝑇1
(𝑟𝑁+1|𝜽𝑢𝑝

(𝑔)
)

𝑡

𝑟𝑁+1

𝑑𝜏}

𝑔=1,…,𝐺

 

3. Subtract 𝑟𝑁+1 from the average of the above vector to get an unbiased RUL estimate. 

Similarly, in the case 𝑑𝑁+1 = 2, the CDF of the arrival time in state 3 is: 

 

 

𝐹𝑇1+𝑇2
(𝑡|𝒓, 𝒅, (𝑟𝑁+1, 𝑑𝑁+1 = 2)) = 

= ∫ 𝑃(𝑇1 + 𝑇2 ≤ 𝑡|𝒓, 𝒅, (𝑟𝑁+1, 𝑑𝑁+1 = 2), 𝜽)𝜋(𝜽|𝒓, 𝒅, (𝑟𝑁+1, 𝑑𝑁+1 = 2))𝑑𝜽
Θ

 

(26) 

 

where (see the Appendix for the proof): 

 

𝑃(𝑇1 + 𝑇2 ≤ 𝑡|𝒓, 𝒅, (𝑟𝑁+1, 𝑑𝑁+1 = 2), 𝜽) =

=
∫ [𝐹𝑇2

(𝑡 − 𝜏|𝜽) − 𝐹𝑇2
(𝑟𝑁+1 − 𝜏|𝜽)]𝑓𝑇1

(𝜏|𝜽)𝑑𝜏
𝑟𝑁+1

0

∫ [1 − 𝐹𝑇2
(𝑟𝑁+1 − 𝜏|𝜽)]𝑓𝑇1

(𝜏|𝜽)
𝑟𝑁+1

0
𝑑𝜏

 
(27) 
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In this case, the procedure to estimate the RUL becomes: 

1. Draw 𝐺 samples 𝜽𝑢𝑝
(1)

, … , 𝜽𝑢𝑝
(𝐺)

 from the updated posterior distribution 𝜋(𝜽|𝒓, 𝒅, (𝑟𝑁+1, 𝑑𝑁+1 = 2)) 

via a MCMC algorithm 

2. Compute, with the help of numerical integration methods, the vector of values: 

{
∫ [𝐹𝑇2(𝑡−𝜏|𝜽𝑢𝑝

(𝑔)
)−𝐹𝑇2(𝑟𝑁+1−𝜏|𝜽𝑢𝑝

(𝑔)
)]𝑓𝑇1(𝜏|𝜽𝑢𝑝

(𝑔)
)𝑑𝜏

𝑟𝑁+1
0

∫ [1−𝐹𝑇2(𝑟𝑁+1−𝜏|𝜽𝑢𝑝
(𝑔)

)]𝑓𝑇1(𝜏|𝜽𝑢𝑝
(𝑔)

)
𝑟𝑁+1

0
𝑑𝜏

}
𝑔=1,…,𝐺

  

3. An unbiased estimate for the 𝑅𝑈𝐿 can be obtained by subtracting 𝑟𝑁+1 to the mean of the above 

vector. 

4.4 Sensitivity analysis 
In the Bayesian framework, the choice of a proper prior distribution is one of the most delicate issues since 

it requires  the elicitation of a distribution consistent with the prior knowledge (Gelman, 2002). Thus, 

sensitivity analysis methods are usually applied to quantify the effects of modifications of the parameter 

prior distribution and its hyper-parameters on the posterior distribution and on the predictions of interest 

(e.g., Roos et al., 2013; Oakley & O’Hagan, 2004). This study becomes particularly important in case of scarcity 

of field data, when the posterior predictions are expected to be strongly dependent from the prior 

distribution. In particular, within the framework proposed in this work, we are interested in assessing the 

influence of the values of the hyper-parameters 𝑚1 and 𝑚2, which can be interpreted as weights given to 

the expert judgements about transition times 𝑇1 and 𝑇2, respectively (Section 3.1). 

To do this, the procedure for the computation of the posterior distribution and of the predictors of interest 

(Sections 3.2 and 3.3) can be repeated assigning different values to the hyper-parameters 𝑚1 and 𝑚2.  

In practice, in the case in which only few field data are available and expert opinions on the transition times 

are vague, the final choice of the hyper-parameters 𝑚1 and 𝑚2 should take into account also considerations 

about risk aversion. Let us consider, for example, a critical component whose failure entails much larger 

economical losses than the cost of its replacement. In a situation in which the few field data available would 

suggest transition times longer than that suggested by the expert, a cautious decision-maker should 

overweigh the expert opinions and, thus, use large 𝑚1 and 𝑚2 values also on the basis of the findings of the 

sensitivity analysis.  

5 Case study 
In order to develop the three-state model of the degradation process (Section 2), the prior distributions of 

the model parameters have been elicited from an expert using a questionnaire. The expert was asked to 

provide the 0.10, 0.50, 0.90 quantiles of the transition time 𝑇1 and, additionally, he had the possibility of 

estimating for some proposed 𝑇1 values the correspondent quantile orders. Expert answers are reported in 

Table 2. Finally, the expert indicated as Most Trustworthy Specification (MTS) the pair (𝑠𝑖̅, 𝑞𝑖̅) = (227, 0.50). 

 

# 𝑠𝑖  𝑞𝑖  

1 50 0.01 

2 100 0.05 

3 143 0.1 

4 160 0.15 

5 195 0.30 

6 227 0.5 
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7 250 0.7 

8 300 0.9 

Table 2. Expert opinions for transition time 𝑇1. The value 𝑠𝑖, expressed in terms of working hours, indicates the quantile 

of order 𝑞𝑖 of transition time 𝑇1. Bold values correspond to the opinions provided by the expert, whereas the other 

values were proposed in the questionnaire   

In this case study, it is reasonable to assume that the hazard function of the transition times between two 

consecutive states is a non-decreasing function. In fact, this degradation process is characterized by a 

continuous worsening of the conditions of the component, which leads to an increasing risk of having a 

transition into a successive degradation state. Hence, the choice of 𝛽1
0 ≥ 1 seems to be adequate. In 

particular, without further information, we assumed 𝛽1
0 = 1. 

Figure 4 shows the results of the calibration of the hyper-parameters 𝑚1 and 𝑐1 according to the procedure 

illustrated in Section 4.1. Notice that the value of 𝑚1 which minimizes 𝒟𝑚1
(𝑓, 𝑓𝜋(⋅|𝑐1

∗(𝑚1))) is 𝑚1
∗ ≈ 3.5 

(Figure 4 right), which corresponds to an optimal value of 𝑐1, 𝑐1
∗(𝑚1

∗) ≈ 5.78.  

Figure 4. Results of step II (left) and III (right) of the joint calibration procedure for the pair (𝑚1, 𝑐1) (Figure 3)  

The results of the elicitation of the prior distributions, with values 𝑚1 = 3.5 and 𝑐1 = 5.78 in Eq. (8) and Eq. 

(9), are shown in Figure 5. Notice that the distribution 𝜋(𝛽1) is quite uninformative, since it embraces with 

non-negligible probability also values such as 𝛽1 > 5: according to (Bousquet, 2010), these values can be 

judged as physically extreme in a context of reliability analysis of industrial installations. The distributions 

𝜋(𝛼1|𝛽1 = 𝑦) tend to concentrate in a neighbourhood of 𝑠𝑖̅ as 𝑦 increases. This can be observed also in Figure 

5 lower left, where 2 ⋅ 105 i.i.d. samples from the marginal prior 𝜋(𝛼1, 𝛽1) are shown. Finally, Figure 5 lower 

right, shows that the discrepancy between the elicited prior predictive distribution and the expert opinions 

is reasonably low. 

With regards to the transition time 𝑇2, the expert gave the opinions reported in Table 3, and he also specified 

that he felt very little confident about them. Furthermore, since very few components have been found in 

state 3 during the inspection, the dataset conveys scarce information about the parameters 𝛼2 and 𝛽2. For 

this reason, in accordance with the expert feeling, instead of applying the proposed optimization procedure 

to find the hyper-parameter 𝑚2, we prefer to assign to 𝑚2 a small value (i.e., 𝑚2 = 0.5), which corresponds 

to a weakly informative prior on the parameters 𝛼2 and 𝛽2. Then, an analysis of the sensitivity of the 

prediction to the 𝑚2  values has been performed by repeating the predictions with 𝑚2 = 3.7 and 𝑚2 = 10. 

In correspondence of 𝑚2 = 0.5 and with the pair (30, 0.50) chosen as 𝑀𝑇𝑆, the result of step II of the 

procedure in Figure 3 is 𝑐2
∗ ≈ 10.05. The obtained marginal prior distribution 𝜋(𝛼2, 𝛽2) is shown in Figure 6.  
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Notice that, although 50 working hours is indicated by the expert as the 0.90 quantile, the choice of a small 

value for 𝑚2 causes a prior distribution in which the probability of a larger scale parameter is not negligible, 

especially for those values of the shape parameter 𝛽2 that are physically most admissible.  

  

     
    

# 𝑠𝑖  𝑞𝑖  𝑞𝑖
(𝑒)

 

1 50 0.01 0.007 

2 100 0.05 0.032 

3 143 0.1 0.090 

4 160 0.15 0.131 

5 195 0.30 0.275 

6 227 0.5 0.500 

7 250 0.7 0.675 

8 300 0.9 0.878 
 

 

Figure 5. Obtained marginal prior distribution 𝜋(𝛽1) (upper left); the PDFs 𝜋(𝛼1|𝛽1 = 𝑦) for some possible values 𝑦 =

1,4,7,10,13 that 𝛽1 can assume (upper right); 200000 i.i.d. samples from the joint prior distribution 𝜋(𝛼1, 𝛽1) (lower 

left); the Table comparing the quantiles of the predictive distribution arising from the elicited prior with the expert 

opinions (lower right)  

# 𝑠𝑖 𝑞𝑖 

1 50 0.10 

2 100 0.50 

3 143 0.90 
Table 3. Expert opinions for transition time 𝑇2. The value 𝑠𝑖, expressed in terms of working hours, indicates the quantile 

of order 𝑞𝑖 of transition time 𝑇2. Bold values correspond to the opinions provided by the expert, whereas the other 

values were proposed in the questionnaire    

Once the prior distributions have been obtained, we have applied the following procedure to sample from 

the posterior distribution  𝜋(𝜽|𝒓, 𝒅): 

 𝑆 = 100000 iterations of the A-MCMC algorithm are run, for tuning the entries of the proposal 

distribution covariance matrix Σ. 
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 𝐺 = 400000 iterations of the N-MHRW algorithm are run with the proposal distribution covariance 

matrix setted to Σ(𝑆).  

The obtained results of the MCMC simulations are shown in Figure 7. 

To test the convergence of the chain, we have applied the convergence diagnostic tools described in 

Appendix. The results are summarized in Table 4. From the traceplots and the Geweke tests, there is no 

evidence of the need of a burn-in period (Figures 7a, 7b). The autocorrelation plots show that the algorithm 

is not extremely efficient, due to its rejection-based nature (with 𝑤 = 4, the A-MCMC tunes the proposal 

density in order to obtain an optimal acceptance ratio of about 25%). However, the 400000 iterations 

performed allow obtaining an effective sample size greater than or equal to 6475 for all the parameters. 

 
 

  

# 𝑠𝑖 𝑞𝑖 𝑞𝑖
(𝑒)

 

1 50 0.10 0.074 

2 100 0.50 0.50 

3 143 0.90 0.871 
 

 

Figure 6. Obtained marginal prior distribution 𝜋(𝛽2) (upper left); the PDFs 𝜋(𝛼2|𝛽2 = 𝑦) for some possible values 𝑦 =

1,4,7,10,13 that 𝛽2 can assume (upper right); 200000 i.i.d. samples from the joint prior distribution 𝜋(𝛼2, 𝛽2) (lower 

left); the Table comparing the quantiles of the predictive distribution arising from the elicited prior with the expert 

opinions (lower right) 

 

Chain Effective sample size Geweke test p-value 

{𝛼1
(𝑔)

}
𝑔=1,…,𝐺

 19145 0.524 

{𝛽1
(𝑔)

}
𝑔=1,…,𝐺

 19745 0.878 
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{𝛼2
(𝑔)

}
𝑔=1,…,𝐺

 6475 0.113 

{𝛽2
(𝑔)

}
𝑔=1,…,𝐺

 17341 0.071 

 

Table 4. The effective sample sizes and the p-values of the Geweke test from the simulated Markov chain 
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Figure 7. Results of the MCMC simulation from 𝜋(𝜽|𝒓, 𝒅): traceplots (7a, 7b), autocorrelation plots (7c, 7d), histograms 

with the kernel density estimations of the marginal posterior densities for each parameter (7e, 7f), and 200000 MCMC 

samples out of 400000 from 𝜋(𝛼1, 𝛽1|𝒓, 𝒅) and 𝜋(𝛼2, 𝛽2|𝒓, 𝒅) (7g, 7h) 

Figure 7 shows that the posterior marginal density 𝜋(𝛼1, 𝛽1|𝒓, 𝒅) has moved towards lower values of the 

scale parameter with respect to the corresponding prior marginal density 𝜋(𝛼1, 𝛽1) (Figure 5). This is 

probably due to the fact that the expert opinions do not take into account the effects of some harsh 

operational conditions experienced by the diaphragms during their lives. Future work will be developed to 

embed the operational conditions into a Proportional Hazards model.  
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The comparison of the posterior marginal density 𝜋(𝛼2, 𝛽2|𝒓, 𝒅) of Figure 7 with the corresponding prior 

marginal density 𝜋(𝛼2, 𝛽2) of Figure 6 shows that i) the uncertainty on the shape parameter remains quite 

large, ranging about from 1 to 10, ii) there is a consistent increment of the scale parameter. Thus, the 

collected data seem to suggest that the transition time 𝑇2 is larger than what the expert believes. 

Once an effective sample of parameters values taken from the posterior distribution becomes available, it 

can be used to estimate the a posteriori probabilities of being in the three states over time, with the 

corresponding (0.05, 0.95) pointwise credibility bands. Figure 8 shows that the large uncertainty on 

parameters 𝛼2 and 𝛽2 causes very large credibility bands for the probability of occupying states 2 and 3, 

especially after 150 working hours. This result is due to the fact that the majority (104 out of 109) of the 

components of the dataset were replaced within 173 working hours. The validity of the estimates on longer 

time windows relies on the assumption that the conditional Weibull model is adequate to describe the 

second transition time. This assumption can be fully verified only when a more consistent number of 

components observed in states 2 and 3 at longer working times will be available.  

Figure 8. Probability that a component is in the three states over time (solid line), with the (0.05, 0.95) pointwise 

credibility band (dashed lines) 

Since the probability of being in state 3 over time coincides with the CDF of the EPDM diaphragms failure 

time, the predictions shown in Figure 8c are of particular interest for maintenance decision. This result can 

be helpful to determine the best replacement time value for the EPDM diaphragms, in order to achieve a 

satisfactory trade off between the minimization of the production costs and the reduction of the failure risk. 

With respect to the production cost, one should consider several factors such as the cost of the component 

replacement, which includes the cost of the diaphragm itself and of performing the technical actions, the 

economic loss due temporary unavailability of the system and the possibility of human errors during the 

repair. With respect to the failure risk, it has to be considered that a EPDM failure causes the loss of all the 

production and a long downtime of the entire plant for the purification and certification of the system. The 

identification of the optimal replacement time is typically performed by defining a cost function which 

properly takes into account the cost factors above listed. The defined cost function is then minimized with 

respect to the replacement time. 

Finally, we have performed a sensitivity analysis on the hyper-parameter 𝑚2, governing the prior distribution 

on the parameters 𝛼2 and 𝛽2 of the transition time 𝑇2. The objective is to evaluate the modifications of the 

predicted transition times as the parameter 𝑚2 increases, i.e., more credit is given to prior opinions.  

Figure 9 compares the expected probabilities of occupancy of the three states obtained with 𝑚2 = 0.5 to 

those obtained with 𝑚2 = 3.7 and 𝑚2 = 10. In Figure 9a, we can see that the effect on the transition time 
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𝑇1 is very small (though not null, because (𝛼1, 𝛽1) and (𝛼2, 𝛽2) are a posteriori dependent), whereas a 

noticeable difference can be observed for transition time 𝑇2 (Figure 9b and 9c). As expected, the second 

transition time tends to occur earlier as 𝑚2 increases, since the expert predictions about 𝑇2 seem to be 

shorter than those suggested by the data. This is particularly true for the low order quantiles of 𝑇2, which are 

the most influenced (Figure 9c), since the expert judgement allocates probability mass on shorter transition 

times. The performed sensitivity analysis points out that the predictions are quite sensitive on the choice of 

the prior distribution for the parameters governing the second transition time. Eventually, the adoption of 

prudential policies might suggest to overweigh, in this case, the vague expert opinions.   

Figure 9. The expected probability of occupancy of the three states over time, in the three cases 𝑚2 = 0.5, 𝑚2 = 3.7 

and 𝑚2 = 10  

In the remaining part of this section, we investigate the potential use of the proposed Bayesian framework 

in the case in which it were possile to periodically perform non destructive inspections of the component, 

according to Section 3.3. To this aim, we assume that an hypothetical (𝑁 + 1)𝑡ℎ diaphragm has been 

observed at time 𝑟𝑁+1 > 0 and found in state 𝑑𝑁+1 < 3. First of all, notice that the knowledge of the 

detection outcome allows updating the predictions for the failure time reported in Figure 8c, i.e., a new 

datum becomes available and it can be used to update the parameters’ posterior distribution. Furthermore, 

in this case, the maintenance planner is interested in the prediction of the RUL of the specific (𝑁 + 1)𝑡ℎ 

component, which was inspected at time 𝑟𝑁+1 > 0 and found in state 𝑑𝑁+1 < 3. Observing the predicted 

RUL and the corresponding credibility band, it is possible to decide wheter and for how much more time the 

component can be exploited in the production line. 

Figure 10 shows the obtained RUL predictions for three hypothetical components, which are found in state 

2 at inspections performed at times 10, 250, 500, respectively. 

It is interesting to observe that the RUL credibility intervals are not monotonically decreasing as the time 

𝑟𝑁+1 at which the component is observed in state 2 increases. For example, the 95% quantile is larger when 

the inspection is performed at time 500 than when is performed at time 250. The reason is that the credibility 

intervals in these two cases are generated from two different posterior distributions, 𝜋(𝜽|𝒓, 𝒅, (500,2)) and 

𝜋(𝜽|𝒓, 𝒅, (250,2)), respectively. The former is heavily influenced by the observation (500,2), which 

corresponds to a component survived to state 3 after a very long working time: this rather ‘optimistic’ 

evidence generates predictions for the transition times that are larger than those obtained by updating with 

(250,2). This is also confirmed by the comparison of Figures 10 and 11, which shows the predictions obtained 

without performing the updating, i.e., in the case the posterior distribution used for the inference is 

𝜋(𝜽|𝒓, 𝒅). The effect of the updating is very relevant for the case (500,2), especially for high quantiles of the 
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credible interval. This remarks the importance of exploiting all the available information when dealing with 

small sample data.  

Figure 10. The expected CDFs of the RUL for three different components observed at different times in state 2, 

calculated by updating the posterior distribution (10a). The corresponding (0.05, 0.95) credibility intervals are drawn 

in Figure 10b, with the quantiles of order 0.05, 0.50, 0.95 marked with an empty circle  

Figure 11. The expected CDFs of the RUL for three different components observed at different times in state 2, 

calculated without updating the posterior distribution (11a). The corresponding (0.05, 0.95) credibility intervals are 

drawn in Figure 11b, with the quantiles of order 0.05, 0.50, 0.95 marked with an empty circle  

To further support maintenance decision making, future research work will focus on the development of a 

sound maintenance cost model, which requires estimating the costs and benefits of inspecting and removing 

the membranes. These estimations are very difficult in the considered case study, as it pertains to a field (i.e., 

the biopharmaceutical industry) where there exists a variety of industry specific complications and strict 

regulations. For example, re-starting the production process after a shutdown due to failure takes 

approximately 30 days, due to the specific procedures required by the regulatory committees to guarantee 

the safety of the medicines. Thus, the revenue losses caused by the failure depend on several factors such as 

the seasonal period, the type of medicine not produced, the portion of the lot already produced, etc. which 

make difficult the estimation of the cost of the failure. Yet, maintenance inspections are performed in an 

opportunistic approach, the maintenance opportunities being to gain access to the diaphragms during a 
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programmed system shutdown. This entails that cost models based on periodic inspections are not applicable 

and more complex models need to be developed, which encode the variability of the time to produce a 

medicine lot. 

Once the cost model is developed, we will also perform a sensitivity analysis to check whether some 

parameters can be set at default values without appreciable impact on optimality of the maintenance policy. 

This could simplify the parameter estimation problem, e.g., by showing that it would not be relevant to 

assume more complicated distributions than an exponential distribution (Coolen, F.P.A., Dekker,1995). 

6 Discussion 
The aim of this Section is to comment on the applicability of the proposed methodology to other case studies.  

From a wide perspective, it seems fair to say that when the objective of a research investigation is to exploit 

all the knowledge, information and data available to solve a general issue such as the estimation of the 

parameters of a multi-state model, then the peculiarities of the considered case study always compromise 

the generality of the developed solution. 

In this work, the peculiar characteristics of the case study concern i) the assumptions behind the degradation 

model; ii) the available dataset; iii) the information retrievable from experts through the elicitation process. 

With respect to the degradation model, there are three main assumptions in this work: 

1. The degradation process is a three-state process. This assumption comes from the practice 
of the maintenance operators working at the industrial partner, who use these three levels 
to qualitatively indicate the membrane health state. When the number of degradation states 
increases, one has to consider the additional transition times 𝑇𝑖, 𝑖 ≥ 3 and, correspondingly, 
the inspection outcomes of components found in degradation states 𝑑>3. To accommodate 
this evidence, we need to change the likelihood function in Equation (15), which depends on 
additional model parameters (i.e., the cardinality of 𝜽 increases). For example, in (Compare 
et al., 2016), a four-state degradation process is considered and the likelihood function is 
derived, which depends on six parameters.  
On the other side, the additional model parameters must be encoded in the MCMC 

algorithm, thus leading to a rise in the computational burden, due to both the additional 

time needed to numerically calculate the likelihood function (see Compare et al., 2016) and 

the increase in the number of chains to be tracked and analyzed. 

In general, we can conclude that the larger the number of states, the more refined the 

description of the degradation process, the more complex the issue of estimating the model 

parameters. 

2. The degradation process is homogeneous (Moghaddas & Zuo, 2015). That is, we assume that 
the sojourn time in any state does not impact on those in the other states. In this work, the 
assumption of homogeneous semi-Markov process is justified by the fact that the membrane 
degradation has been considered an additive process, where the magnitude of the 
degradation increments does not depend on time but, rather, on the number of cycles the 
membrane is exposed to. In general, however, the independence assumption of the sojourn 
times is questionable and, if not applicable, one has to change the likelihood function to 
encode transition rates that depend on both the sojourn time in the current state and the 
total time of the component (e.g., Moghaddas & Zuo, 2015). In this respect, finding a suitable 
model for the transition rates is not straightforward. 

3. The degradation process is left-to-right. This assumption also derives from the specific 
characteristics of the considered case study. Namely, the membranes have always been 



26 
 

replaced upon inspection; then, transitions from right to left have never been experienced 
by the membranes. Moreover, the cumulative damage nature of the degradation process 
makes meaningless the direct jumps from one state to the states after the next degraded 
state: abrupt degradation is modeled as a rapid passing through the states, rather than by 
jumps. In general, one could consider multi-state systems with more complex structures 
(e.g., Fleming & Smit, 2008; Baraldi et al. 2013, Lin et al., 2015). In this case, the 
considerations above apply, regarding the consequence on the computational burden of 
increasing the complexity of the likelihood function and the number of parameters.  

 

With respect to the inspection outcomes dataset, evidently the available evidence determines the structure 

of the likelihood function, which is just a representation of the probability of gathering that evidence. Then, 

different types of datasets lead to considering different types of likelihood functions. For example, in (Baraldi 

et al. 2014b), the likelihood function is derived for a four-state left-to-right degradation process, in which 

maintenance inspections of different refinement levels (i.e., requiring dis-assembling or not) can detect the 

component in different states. 

In regards to the elicitation process, the procedure illustrated in Section 4 has been chosen based on a series 

of preliminary interviews with the experts, in which their ability in providing statements like those in Section 

4 has been checked. The choice of this procedure is also motivated by the findings of (Teigen & Jorgensen, 

2005), which show that the elicitation biases reduce when experts assign both the quantiles 𝑠𝑖 and the 

corresponding levels 𝑞𝑖 x 100%; on the contrary, when experts are asked to assign the 𝑠𝑖 values corresponding 

to a pre-fixed level 𝑞𝑖 x 100%, the correctness of the judgment worsens. 

Obviously, if the elicited information changes, then the procedure adopted in this work can no longer be 

applied and a new combination of techniques is required to be developed to respond to the specific type of 

gathered information. This confirms that every case study can be considered as a unique issue, which 

deserves its own tailored solution. 

Finally, there will always be some uncertainty in the choice of priors, especially in case the information from 

which these distributions are constructed is poor, or when there are several priors elicited, say, from different 

experts. It is of interest, then, to characterize the sensitivity of the posterior distribution to priors. To do this, 

several techniques have been developed (e.g., Hill & Spal, 1994; Lopes, H.F., Tobias, 2011;), which can be 

applied depending on the characteristics of the case study. In this work, we have developed a sensitivity 

analysis for the second transition time, only, where the scarcity of data and the lack of confidence on the 

provided information led us to choose uninformative priors and perform a sensitivity analysis on the hyper-

parameter 𝑚2 governing the prior distributions of parameters 𝛼2 and 𝛽2. Again, if change the elicitation 

framework, this analysis on a single parameter can no longer be done. 

 

7 Conclusions 
In this paper, we have proposed a complete procedure for assessing the reliability of industrial equipment 

whose degradation process can be described through a three-state semi-Markov model. The method has 

been set within a Bayesian framework, that allows updating the prior distribution elicited from an expert 

with the available field data. In details, a Metropolis-Hastings algorithm, combined with numerical 

integration methods, has been proposed to sample from the complex posterior distribution, where the 

choice of the covariance matrix of the normal proposal density is automatically optimized in a preliminary 



27 
 

run of an adaptive MCMC algorithm. Then, the posterior samples allow the estimation of the probabilities of 

occupying the different degradation states over time, the component remaining useful time and the 

corresponding uncertainty.  

One of the advantages in the use of multi-state models, compared to traditional binary models, lies in the 

possibility of making estimates about the RUL of a component on the basis of its degradation conditions. This 

makes the procedure usable in support of the planning of periodic maintenance actions, and for condition 

based and predictive Maintenance.    

Besides, the application of the method to a real case study has shown the importance of iterating the 

posterior distribution updating each time a new observation is available, especially in situations of scarcity 

of data.  

Future works will focus on the development of a Proportional Hazards model which takes into account the 

effects on the degradation process of the operating conditions in which the components are employed. 
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9 Appendix 

9.1 MCMC diagnostics 
Without loss of generality, let 𝜃 denote one of the parameters in the vector 𝜽. 

 

 Traceplot (e.g., Jackman, 2009) 

It is the plot of the time series (𝑖, 𝜃(𝑖))
𝑖=1,…,𝐺

 of the states visited by the chain. It provides a pictorial 

view of the needed burn-in length (Figure 12). Moreover, a traceplot also gives a snapshot of the 

chain mixing (i.e., how quickly it explores the support of the target distribution), which is strictly 

related to the sampling efficiency. Besides, the thickness of a traceplot is a rough visual criterion to 

check if the number of executed iterations is large enough to obtain a significant sample from the 

posterior density: a little thick traceplot alerts about the possibility of obtaining a not very accurate 

sample and suggests to lengthen the drawn MCMC chain. 

 

 Autocorrelation plot (e.g., Jackman, 2009) 
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An autocorrelation plot is the graph (𝑙, �̂�𝑙)𝑙=0,…,𝐿 of the empirical autocorrelations �̂�𝑙 =

cor ((𝜃(1), … , 𝜃(𝐺−𝑙)), (𝜃(1+𝑙), … , 𝜃(𝐺))) of the process at lag 𝑙, 𝑙 = 0, … , 𝐿, where usually 𝐿 is set to 

about 20, and, obviously, 𝜌0 = 1. The efficiency of the MCMC algorithms can be diagnosed by 

observing the values �̂�𝑙  ∀𝑙 = 1, … , 𝐿, especially for small 𝑙: the more such values are close to 0, the 

larger the efficiency of the algorithm (in the limit case, if our sampling were i.i.d., we would obtain 

�̂�𝑙 ≈ 0 ∀𝑙 = 1, … , 𝐿). The practice of thinning the chain in order to reduce autocorrelation is not 

suggested, unless it is necessary due to computer memory constraints. Indeed, the discard of some 

MCMC samples has the effect of worsening the posterior estimates. (MacEachern & Berliner, 1994, 

Link & Eaton, 2012).    

 

Figure 12. Unlucky choices for the initial state 𝜃(0) can require many burn-in iterations. Here, a burn-in of at least 2500 

iterations is needed 

 

 Effective Sample Size (e.g., Jackman, 2009) 

 

The 𝐺 draws 𝜃(1), … , 𝜃(𝐺) from 𝜋(𝜃|𝒓, 𝒅) through a MCMC sampler are not independent. Thus, the 

amount of information carried by such a sample is equivalent, actually, to that brought by a virtual 

i.i.d. sample from 𝜋(𝜃|𝒓, 𝒅) of a smaller size 𝐺∗ < 𝐺. 𝐺∗ is called Effective Sample Size (ESS). In 

particular, the larger the exploration efficiency of the algorithm, the larger the ESS. The following 

considerations lead to a possible quantitative definition of the ESS (e.g., Thiebaux & Zwiers, 1984, 

Jackman, 2009). Let Var(�̅�𝐺) be the variance of the sample mean �̅�𝐺 and, under the assumption that 

𝜃(1), … , 𝜃(𝐺) are all identically distributed as 𝜋(𝜃|𝒓, 𝒅) (i.e., sampled from a chain that has already 

reached convergence), let 𝜎2 = Var(𝜃(𝑔)) be the variance of each draw 𝜃(𝑔). If 𝜃(1), … , 𝜃(𝐺) were 

𝐺 i.i.d. samples, we would obtain the well-known identity (Zio, 2013): 

 

 
Var(�̅�𝐺) =

𝜎2

𝐺
  . 

 

(28) 

Taking into account the autocorrelation introduced by MCMC methods, it can be shown (Jackman, 

2009) that, for large 𝐺: 

 

 
Var(�̅�𝐺) ≈

𝜎2

𝐺 (1 + 2 ∑ 𝜌𝑙
∞
𝑙=1 )⁄

 

 

(29) 
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So, the Effective Sample Size can be defined as (Jackman, 2009): 

 

 
𝐺∗ =

𝐺

1 + 2 ∑ 𝜌𝑙
∞
𝑙=1

 

 

(30) 

 

and, substituting Eq. (30) in Eq. (29) it follows that:  

 
Var(�̅�𝐺) ≈

𝜎2

𝐺∗
 

 

(31) 

The direct application of equation (30) is not possible; in fact, a chain of 𝐺 observations allows the 

estimation of the autocorrelation up to lag 𝐺 − 2 only, instead of infinite. Moreover the empirical 

estimate �̂�𝑙 for 𝜌𝑙 becomes more uncertain with larger 𝑙. 

According to (Thiebaux & Zwiers, 1984, Jackman, 2009), one can overcome this problem by setting: 

 Var(�̅�𝐺) ≈
𝑆0

𝐺
 (32) 

where 𝑆0 is the spectral density at frequency 0 of the employed chain. Eqs. (31) and (32) imply 

that one can estimate the ESS with: 

 

 𝐺∗ ≈ 𝐺
𝜎2̂

𝑆0̂

 (33) 

 

being 𝜎2̂ the empirical variance of the sampled chain 𝜃(1), … , 𝜃(𝐺) and 𝑆0̂ its empirical spectral 

density at frequency 0. This latter may be obtained by fitting the sampled chain with an Auto-

Regressive (AR) process (Jackman, 2009). 

 

 Geweke test (Geweke, 1992) 

 

In (Geweke, 1992), the null hypothesis that the mean �̅�𝐴 of the first 10% of draws is equal to the 

mean �̅�𝐵 of the last 50% (assuming that this last 50% has already reached convergence) is tested to 

assess the convergence of the Markov chain. Thus, 𝐺𝐴 =
𝐺

10
 and 𝐺𝐵 =

𝐺

2
 are the cardinalities of the 

two considered tranches, whereas 𝑆0
𝐴 and 𝑆0

𝐵 are the estimators of the spectral density at frequency 

0 of the first 10% and the last 50%, respectively, obtained by means of the fitting of an Auto-

Regressive (AR) process. Under the null hypothesis, it holds: 

 

 

�̅�𝐴 − �̅�𝐵

√𝐺𝐴
−1𝑆0

𝐴 + 𝐺𝐵
−1𝑆0

𝐵

 ~ 𝐴𝑁(0,1)  
(34) 

 

where 𝐴𝑁(0,1) is the asymptotic standard normal distribution. So, if the test gives evidence against 

the null hypothesis �̅�𝐴 = �̅�𝐵, then we can conclude that the burn-in length must be increased.  
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Other MCMC diagnostics methods (e.g., Gelman-Rubin, Heidelberger-Welch, Raftery-Lewis) can be found in 

(Cowles & Carlin, 1996). 

9.2 Proof of Eq. (27)  
Notice that ∀ 𝑡 ≥ 𝑟𝑁+1 > 0: 

𝑃(𝑇1 + 𝑇2 ≤ 𝑡|𝒓, 𝒅, (𝑟𝑁+1, 𝑑𝑁+1 = 2), 𝜽) = 𝑃(𝑇1 + 𝑇2 ≤ 𝑡|(𝑟𝑁+1, 𝑑𝑁+1 = 2), 𝜽) = 

= 𝑃(𝑇1 + 𝑇2 ≤ 𝑡|𝑇1 ≤ 𝑟𝑁+1, 𝑇1 + 𝑇2 > 𝑟𝑁+1, 𝜽) =
𝑃(𝑟𝑁+1 < 𝑇1 + 𝑇2 ≤ 𝑡, 𝑇1 ≤ 𝑟𝑁+1|𝜽)

𝑃(𝑇1 ≤ 𝑟𝑁+1, 𝑇1 + 𝑇2 > 𝑟𝑁+1|𝜽)
 

where the first identity holds because we make the hypothesis, similarly to what we assumed in the Bayesian 

model presented in (1), that the two transition times of the new component are conditional independent of 

the transition times of the components in the dataset, given 𝜽.   

We now focus on computing the fraction. Its numerator can be calculated by integrating the joint PDF 

𝑓𝑇1,𝑇2|𝜽(𝑡1, 𝑡2|𝜽) over the domain shown in Figure 13a: 

𝑃(𝑟𝑁+1 < 𝑇1 + 𝑇2 ≤ 𝑡, 𝑇1 ≤ 𝑟𝑁+1|𝜽) = ∫ ∫ 𝑓𝑇1,𝑇2|𝜽

𝑡−𝑡1

𝑟𝑁+1−𝑡1

(𝑡1, 𝑡2|𝜽)𝑑𝑡2𝑑𝑡1

𝑟𝑁+1

0

= 

= ∫ (∫ 𝑓𝑇2|𝜽

𝑡−𝑡1

𝑟𝑁+1−𝑡1

(𝑡2|𝜽)𝑑𝑡2)
𝑟𝑁+1

0

𝑓𝑇1|𝜽(𝑡1|𝜽)𝑑𝑡1 = ∫ [𝐹𝑇2
(𝑡 − 𝑡1|𝜽) − 𝐹𝑇2

(𝑟𝑁+1 − 𝑡1|𝜽)]𝑓𝑇1
(𝑡1|𝜽)𝑑𝑡1

𝑟𝑁+1

0

, 

where we exploited the fact that  𝑓𝑇1,𝑇2|𝜽(𝑡1, 𝑡2|𝜽) = 𝑓𝑇1|𝜽(𝑡1|𝜽)𝑓𝑇2|𝜽(𝑡2|𝜽)  due to the conditional 

independence of the two transition times of the new component, given 𝜽.  

While, to obtain the denominator, the integration must be performed on the domain illustrated in Figure 

13b: 

𝑃(𝑇1 ≤ 𝑟𝑁+1, 𝑇1 + 𝑇2 > 𝑟𝑁+1|𝜽) = ∫ ∫ 𝑓𝑇1,𝑇2|𝜽

+∞

𝑟𝑁+1−𝑡1

(𝑡1, 𝑡2|𝜽)𝑑𝑡2𝑑𝑡1

𝑟𝑁+1

0

= 

= ∫ (∫ 𝑓𝑇2|𝜽

+∞

𝑟𝑁+1−𝑡1

(𝑡2|𝜽)𝑑𝑡2)
𝑟𝑁+1

0

𝑓𝑇1|𝜽(𝑡1|𝜽)𝑑𝑡1 = ∫ [1 − 𝐹𝑇2
(𝑟𝑁+1 − 𝑡1|𝜽)]𝑓𝑇1

(𝑡1|𝜽)𝑑𝑡1

𝑟𝑁+1

0

, 

from which it follows Eq. (27). 
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Figure 13. The integration domains used in the computations  
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