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ABSTRACT13

In the Oil &Gas industry, empirical models are used to estimate the drift of pipes for deep-water14

applications. These models encode pipe geometrical features, measured along the pipe length. If15

the estimated drift does not meet the operability requirements, then the pipe is rejected. This16

improves the quality of the purchased pipes, but strongly affects their production costs. We rely17
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on the Gaussian fields theoretical framework to address two issues: the a priori estimation of the18

probability of pipes rejection and the a posteriori estimation of the drift conformance probability,19

given the actual measured parameters. These are fundamental pieces of information for marketing20

decisions. A case study is considered to show the application of the theoretical framework. This is21

based on real pipe measurement data, which have been opportunely re-scaled to avoid the disclosure22

of relevant information.23

1 INTRODUCTION24

To meet the increasing Oil & Gas (O&G) demand of the last decades, exploration has been25

continuously increased, also in deep waters (Di Maio et al. 2017). Deep-water wells require26

structural components such as casing and tubing to work in extremely harsh operating conditions,27

characterized by very large pressure values. These challenge both the equipment operability and28

its capability of preventing catastrophic consequences for the environment, and heavy reputational29

and financial losses to the well operators. For this, different studies have been carried out in30

recent years, which resulted in the definition of empirical models guaranteeing very high quality of31

pipes for the specific deep-water conditions (API 2018; ISO/TR-10400 2018). These models relate32

fundamental quality factors such as collapse pressure, burst, etc., to manufacturing parameters such33

as pipe outer diameter, wall thickness, etc. (API 2018; ISO/TR-10400 2018), some of which are34

affected by epistemic uncertainty.35

On the other side, thewidespread digitalization process that is driving the fourth industrial revolution36

(Lasi et al. 2014) has enabled the O&G pipe industry to collect accurate measurements of the37

geometrical features entering the empirical models defining the pipe quality. In practice, then, a38

produced pipe is not purchased if the measured parameters lead to an estimate of the relevant pipe39

quality factors not meeting the corresponding design requirements, as these undermine the pipe40

reliability and operability.41

The direct consequences of this measuring procedure are, on the one hand, the enhancement of the42

quality of the purchased pipes and, on the other hand, the increase of the pipe production costs, in43

an O&G industry context where currently there is a urgent need for cost reduction (Crooks 2016;44
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Hovem 2019).45

Among the relevant pipe quality factors, we focus on pipe drift (ISO-11960:2014 2014). Roughly,46

this is a measure of the roundness of the inside wall of the pipe. When pipe drift is out of47

specification, tools, pumps, smaller pipes and other items are no longer guaranteed to pass through48

the pipe. Pipe drift, then, heavily impacts on the well operability and economic performances.49

For pipe drift, we develop a novel framework based on the Gaussian field theory, which exploits the50

measurement data of pipe geometric parameters gathered from amill to achieve a twofold objective:51

• Estimation of the rejection probability, given the design of the pipe and its parameters. This52

is an a priori estimation, i.e., provided before pipe production, which relates to the capability53

of the mill of producing pipes with small tolerances. This issue is framed as an Excursion54

Probability Estimation Problem (EPEB, (Adler 2000)): we determine the probability that55

the drift random field gets out of specification. EPEBs are of great interest in many en-56

gineering fields such as aeronautics (Hoblit 1988) and hydrology (Garcia 2016), to cite a few.57

58

• Estimation of the drift over a specific pipe. This is an a posteriori estimation, whichmaps the59

actual measurements of the drift model parameters onto the drift conformance probability60

(i.e, the probability of having drift values meeting the requirements over the entire pipe61

(for Standardization. International Electrotechnical Commission 2012)). The a posteriori62

estimation of the drift conformance probability is tackled through a Bayesian updating of63

the field, based on the gathered evidence of the measurements.64

These a priori and a posteriori estimations are fundamental drivers for the decisions by the pipe65

manufacturer about the proper positioning in the market, as they can be used to relate the pipe66

production cost to the pipe quality, targeted at a specific application.67

To the Authors’ best knowledge, this is the first time that the Gaussian field theoretical framework is68

proposed for the estimation of pipes drift. Moreover, an additional contribution of this work lies in69

that we rely on numerical approaches to derive the a priori and a posteriori estimations, rather than70
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making assumptions on the shape of the Gaussian field kernel, which is expected to significantly71

change from one setting to another. This choice allows applying the methodological framework to72

classes of products, although it prevents from straightforwardly applying known techniques such as73

kriging (e.g., (Williams and Rasmussen 2006; O’Hagan 2006)). Finally, to strengthen the results,74

we also propose a sensitivity analysis to explore the economic effects of reducing the number of75

measurement points and their accuracy.76

The remainder of this paper is organised as follows. In Section 2, the pipe drift model is sketched.77

In Section 3, the developed methodology for both the a priori and a posteriori estimations is pre-78

sented. Section 4 reports the results obtained by applying the proposed methodology to a case study79

derived from a dataset of real pipe measurements. To protect intellectual property, the original data80

have all been modified by applying some corrective factors. In Section 5, the sensitivity analysis is81

proposed. Section 6 concludes the work.82

83

2 PIPE DRIFT84

Consider a pipe of length ! mm. We assume the availability of a mathematical model that85

allows evaluating the pipe drift exploiting the measurements of geometrical parameters acquired by86

means of sensors at pipe sections 6 = {j1, ..., j3} ⊂ Ω = [0, !] ⊂ R, equally spaced at a distance87

Δ = !/3 mm. In this work, we assume that the available drift model is generally defined as:88

�A = 5
(
E;�A [,C0E] ,E;�A [,C<0G] ,E;�A [$30E] , &�A

)
(1)89

where the used pipe geometrical parameters are:90

• Average wall thickness,,C0E;91

• Maximum wall thickness,,C<0G;92

• Average outer diameter, $30E;93

and94
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• &�A is a vector of random variables representing the epistemic uncertainties in the drift95

model;96

• E;�A [$30E],E;�A [,C0E] andE;�A [,C<0G] represent the average values over a critical length97

;�A mm of the average outer diameter, average wall thickness and maximum wall thickness,98

respectively. In particular, the estimations of these values at pipe section j8 consider its first99

#�A = d;�A/Δe subsequent sections, 8 = 1, ..., 3 − #�A + 1, where d◦e indicates the ceiling100

value of its argument. For confidentiality, the value of the critical length ;�A is not reported.101

Notice that in Eq. (1) it is assumed that the smaller the value of �A , the worsen is the pipe102

quality.103

3 METHODOLOGY104

Assume that a dataset is available containing the geometrical parameters of #) pipes, measured105

at points 6. We first rely on Eq. (1) to propagate the uncertain quantities &�A onto the drift values,106

through the Monte Carlo method. Namely, at every measurement location j8 ∈ 6� = {j1, ..., j# },107

where # = 3 − #�A + 1, we sample #"� >> 1 (e.g., #"� = 107) values from the distribution108

of &�A . These samples enter the drift model to get the corresponding #"� values of �A , which109

determine the distribution of the drift assigned to the pipe section. Then, any quantile ? ∈]0, 1[ of110

this distribution can be considered, defining the random variable -? (j8). This can be framed as111

the drift value at pipe section j8 of the worst ?-th portion of produced pipes.112

To simplify the notation, we indicate by -?,8 the variable -? (j8), 8 = 1, ..., # .113

The vector of random variables -?,8, 8 = 1, ..., # , and the corresponding measured values on pipe114

9 , 9 = 1, ..., #) , ? ∈]0, 1[, are indicated by, respectively:115

X? =
[
-?,1, ..., -?,#

]
(2)

x 9? =
[
G
9

?,1, ..., G
9

?,#

]
(3)

For every pipe section j8 ∈ 6� , we can estimate the average value and standard deviation of116
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-?,8 over the #) pipes:117

E[-?,8] ≈
∑#)
9=1 G

9

?,8

#)
(4)118

f-?,8 ≈

√√√√∑#)
9=1

(
G
9

?,8
− E[-?,8]

)2

#) − 1
(5)119

On this basis, we can derive the non-negative definite covariance matrix K? (X?,X?), which120

can be also referred to as kernel, whose (8, :) entry reads:121

 ? (8, :) = E
[ (
-?,8 − E[-?,8]

)
·
(
-?,: − E[-?,: )]

) ]
≈

∑#)
9=1

(
G
9

?,8
− E[-?,8]

)
·
(
G
9

?,:
− E[-?,: ]

)
#) − 1

(6)122

Finally, we define the correlation coefficient123

d? (8, :) =
 ? (8, :)

f-?,8 · f-?,:
(7)124

To check that the Gaussian field theoretical framework is applicable to address both issues in Section125

1, we have to verify that:126

• The process is wide-sense stationary. This means that E[-?,8] is constant for any j8 ∈ 6�127

and the covariance function is invariant to translations, i.e., it depends only on g = j8 − j 9128

(Papoulis and Pillai 2002; Williams and Rasmussen 2006). We verify this through the129

Augmented Dickey-Fuller (Dickey and Fuller 1981) and the Phillips-Perron (Phillips and130

Perron 1988) tests, whose null hypothesis is that a unit root is present in a time series sample,131

whereas the alternative hypothesis is trend-stationarity. The constant mean is indicated by132

E[-? (j)] = `?, ∀j ∈ Ω, ? ∈]0, 1[.133

• The distribution of -?,8 is normal for 8 = 1, ..., # . To check this, we can rely on normality134

tests such as Shapiro-Wilk (Plackett 1983a), Chi-squared (Plackett 1983b) or Lilliefors tests135
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(Lilliefors 1967). We can state that the process is Gaussian when the number =? of sections136

in which the test is positive is =? ≈ # .137

If these two conditions are verified, we have a Gaussian random field in Ω, such that X? ∼138

N
(
M?,K?

)
is multivariate normal for any set 6� = {j1, ..., j# } ⊂ Ω (Adler and Taylor 2009), for139

any # ∈ N, where M? ∈ R# is the vector containing # times the mean value `?. The Probability140

Density Function (pdf) of X? reads141

5X?

(
x?

)
=

1√
(2c)#34CK?

4−
1
2 (x?−M?))K−1

? (x?−M?) (8)142

where x? =
(
G?,1, ..., G?,#

)
∈ R# , 34CK? is the determinant of K? (X?,X?), whereas K−1

? is its143

inverse matrix.144

With respect to the estimation of K?, ? ∈]0, 1[, one way to proceed is to check whether one of the145

analytical kernelmodels available in the literature (e.g., square exponential kernel, rational quadratic146

kernel, periodic kernel, combinations of them, etc. (Williams and Rasmussen 2006; Duvenaud147

et al. 2013)) is suitable to represent the covariance function  ? (g) between the measurement points.148

However, we avoid making this assumption and, then, derive the covariance matrix numerically,149

only. This allows applying the same procedure to different classes of products, which are expected150

to have different kernel shapes. On the other hand, this choice prevents us from straightforwardly151

applying known techniques such as kriging (e.g., (Williams and Rasmussen 2006; O’Hagan 2006))152

and arises numercal issues related to the positive definiteness of the covariance matrix (Williams153

and Rasmussen 2006).154

Consider two points j8 and j: ∈ 6� such that their distance is g = |8 − : |. Then, we estimate the155

covariance as a function of the distance g by evaluating the average value of the covariance between156

every pair (j8, j: ), such that their distance is equal to g, for any g ≤ # (Papoulis and Pillai 2002):157

 ? (g) ≈
∑#−g
8=1  ? (8, 8 + g)

# − g +
∑#−g
8=1

(
E[-?,8] − `?

)
·
(
E[-?,8+g] − `?

)
# − g (9)158
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where the second addend can be disregarded if it is small. For wide-sense stationary Gaussian159

processes, we can estimate the power spectral density as:160

�? (l) =
∫ ∞

−∞
 ? (g)4− 9lg3g − 2c`?X(l) =

∫ ∞

0
 ? (g)2>Blg3g − 2c`?X(l) (10)161

where the second equality holds because  ? (g) is real, whereas X(l) indicates the Dirac’s delta.162

163

3.1 Pipe rejection probability estimation164

For any quantile ? ∈]0, 1[, the pipe rejection probability can be estimated as the probability that165

the drift of the worst ?-th portion of the pipe population goes under the drift conformity requirement166

threshold )� ∈ R in at least one point j ∈ Ω. This is the excursion probability (Adler and Taylor167

2009):168

%

{
inf
j∈Ω

-? (j) ≤ )�
}

(11)169

Notice that we are now considering the entire pipe length, rather than a discrete set of its points.170

According to Adler (Adler 2000), there is no explicit formula for estimating this probability value171

in the general Gaussian case, despite the fact that it appears in a variety of problems. Nevertheless,172

the following approximation holds:173

%

{
inf
j∈Ω

-? (j) ≤ )�
}
= %

{
*)�? (Ω) ≥ 1 ∪ -?,1 ≤ )�

}
≤ %

[
*)�? (Ω) ≥ 1

]
+ %

{
-?,1 ≤ )�

}
≤ E

[
*)�? (Ω)

]
+ %

{
-?,1 ≤ )�

} (12)174

where *)�? (Ω) is the number of downcrossing by -? of the conformity requirement threshold )�175

in Ω, whereas %
{
-?,1 ≤ )�

}
= %0

? is needed since E
[
*
)�
? (Ω)

]
does not consider that the initial176

point of -? can be positioned under )� .177

The issue of estimating the mean of *)�? (Ω) has been addressed in (Adler 2000; Williams and178

Rasmussen 2006; Adler 2010; Lindgren 2006). In particular, Rice (Rice 1944), proposed a formula179
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for stationary and almost surely continuous Gaussian processes on Ω = [0, 1], which has been180

extended and generalized (e.g., (Bulinskaya 1961; Ito et al. 1963; Ylvisaker 1965)):181

E
[
*)�? (1)

]
=

1
2c

√
"2
?

"0
?

4
− ()�−`? )

2

2"0
? (13)182

where `? is the mean of the Gaussian process and "0
? and "2

? are the spectral moments ((Adler183

and Taylor 2009; Lindgren 2006))184

"0
? =

∫ ∞

0
�? (l)3l =  ? (0) = K? (8, 8) 8 = 1, ..., #

"2
? =

∫ ∞

0
l2�? (l)3l

(14)185

The lack of knowledge of the analytical formula of the kernel requires applying a numerical186

approach for the estimation of "2
?: we use the Fast Fourier Transform (FFT) algorithm (Sorensen187

et al. 1987) to numerically evaluate the power spectral density, �? (l) in Eq. (10), which is, then,188

integrated through the trapezoidal rule for approximating the definite integral in Eq. (14) (Atkinson189

1989).190

For many types of random processes, including Gaussian, the number of downcrossings of )�191

converges to a Poisson process as )� decreases (Leadbetter et al. 2012). The interarrival “times”192

over [0, j] of this Poisson process are exponentially distributed with rate equal to E
[
*
)�
? (1)

]
+ %

0
?

j
193

(Leadbetter et al. 2012). If the number of downcrossings of )� obeys a Poisson process, then the194

probability %)�? (j) that )� has been crossed by -? at least once in [0, j] ⊆ Ω is (Papoulis and195

Pillai 2002; Leadbetter et al. 2012):196

%)�? (j) = 1 − 4−
(
E
[
*
)�
? (1)

]
j+%0

?

)
(15)197

If E
[
*
)�
? (1)

]
j + %0

? is small, then we can write (Papoulis and Pillai 2002; Leadbetter et al.198

2012):199

%)�? (j) ≈ E
[
*)�? (1)

]
j + %0

? (16)200
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3.2 Drift conformance probability estimation for a specific pipe201

Once the Gaussian field is characterized by its mean and covariance, it can be used to estimate202

the drift conformance probability of the specific pipe, based on the acquired measurements. For203

generality, we assume that the sensors for measuring the pipe characteristrics and the positions204

they are located on are not necessarily the same of those used to estimate the field. Namely,205

we indicate by Y? =

[
.? (j81), ..., .? (j8=.? )

]
the measured values of drift available at a subset206

�? ⊆ 6� = {j1, ..., j# } of =.? pipe sections, ? ∈]0, 1[. We assume207

Y? = A?X? + & (17)208

where A? is a [=.? × #] matrix defining the elements of X? that are observed, whereas & is a209

zero-mean Gaussian random noise vector in R=.? , with covariance matrix �n , i.e., & ∼ N (0,�n ).210

Although more complex relationships can be modeled by Eq. (17), for simplicity we assume that211

the entries of A? are binaries (8, :) ∈ {0, 1} such that
∑#
:=1 A? (8, :) = 1 and �n = f2

n I=.? .212

213

The probability distribution 5Y? |X?
of Y? conditional to the given random field is still normal,214

being Y? a sum of normal random variables:215

5Y? |X?
∼ N

(
A?M?,�Y?

)
(18)216

where �Y?
= A?K?A)

? + �n (Malings 2017; O’Hagan 2006).217

Bayesian inference allows defining the posterior pdf of the random field conditional to these218

observations (O’Hagan 2006):219

5X? |Y?
∝ 5Y? |X?

· 5X?
(19)220

Namely, based on evidenceY?, the joint probability of the values of ^ ? in points 6� reads (Malings221

2017)222

X? |Y? ∼ N
(
M? |Y?

,�? |Y?

)
(20)223
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where224

M? |Y?
= M? +K?A)

?�
−1
Y?

(
Y? − A?M?

)
(21)

�? |Y?
= K? −K?A)

?�
−1
Y?

A?K)
? (22)

In Figure 1-(a), an example is shown of field updating considering one measurament section j8225

with no uncertainty, i.e., A? ∈ [1 × #] such that A? (1, 8) = 1 and fn = 0. Notice that, in this case,226

the field variability reduces to 0 at the measured point. In fact, it can be derived from Eq. (22) that227

�? |Y?
(8, 8) = 0. The field variability also shrinks at the other points, due to their dependece on the228

measured value, as defined by the covariance function.229

Once the posterior distribution has been estimated, we can proceed with the evaluation of the230

drift conformance probability of a specific pipe. To do this, we apply Monte Carlo sampling231

from the posterior distribution of X? |Y? and estimate the portion of these samples overcoming the232

conformity requirement threshold )� (Figure 1-(b)). This sampling from the multivariate normal233

distribution 5X? |Y?
is relatively easy, as we can rely on the Cholesky decomposition (Press et al.234

1993; Murphy 2012; Golub and Van Loan 2012).235

If the samples x̃ = (G̃1, ..., G̃# )[, [ = 1, ..., � >> 1, from the updated field X? are all larger than236

)� over the entire pipe length, we can state that the pipe will fulfill the conformity requirement237

threshold )� with probability at least 1 − ? ∈]0, 1[. The larger the value of �, the larger the238

confidence in this statement.239

Formally, for every pipe 9 ∈ {1, ..., #) }, based on the actual measurements y 9? we can define the240

binary variable241

Γ
9
? =


1 if min[=1,...,� <8=j8∈6�

(
x̃[ ←− X? |y 9?

)
≥ )�

0 otherwise


(23)242
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On this basis, the drift conformance probability of pipe 9 can be defined as:243

' 9 = 1 −min{? ∈]0, 1[|Γ 9? = 1} (24)244

A different perspective is to consider for every quantile ? ∈]0, 1[ the portion '̂ 9? of samples x̃ that245

are above the threshold)� . This way, we give the pipe drift conformance probability to requirement246

60 64 68 72 76 80 84 88 92 96 100

% pipe length

41

41.5

42

42.5

43

43.5

44

44.5

45

45.5

46

5
%

 -
 D

ri
ft

 [
m

m
]

Updated   3

True values

Updated 

Measurement points

Threshold

Montecarlo samples

(a)

(b)

Fig. 1. (a) Random field updating by means of noise-free measurements using one measurement
point. (b) Representation of all the Monte Carlo samples. For confidentilaity, only the final part of
the pipe is shown.
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threshold )� with probability at least 1 − ?. Formally:247

Γ
9
?,[ =


1 if <8=j8∈6�

(
x̃[ ←− X? |y 9?

)
≥ )�

0 otherwise


(25)248

249

'̂
9
? =

∑�
[=1 Γ

9
?,[

�
(26)250

Although this definition is more rigorous than that in Eq. (24), nonetheless it is more difficult to251

manage for decision making.252

Notice that to estimate the downcrossing probability, we assume that the values of the drift between253

two successive sampled values are on the linear interpolation. This assumption is justified by254

the very large correlation we expect between -?,8 and -?,8±1, 8 = 2, .., # , given that their values255

share the expectation of the geometrical parameters on #�A − 1 pipe sections. Roughly, this large256

correlation tells us that if we know the value of the drift in one point, we also know its value in the257

neighbors.258

Finally, notice that this Monte Carlo procedure and the related assumptions can be replaced by259

easier procedures (e.g., (Williams and Rasmussen 2006; O’Hagan 2006)), if we knew the analytical260

expression of the kernel.261

4 CASE STUDY262

The available dataset is composed of the measurements of minimum, average and maximum263

values of ,C0E, ,C<0G and $30E along the stretch of #) = 169 similar pipes. The pipe length !264

and the measurement distance Δ are not reported for confidentiality. They lead to have a number265

of measuement points 3 > 100. Notice that to protect intellectual property, the original data have266

all been arbitrarily re-scaled, together with the conformity requirement threshold )� , set to 42.13.267

268

In Table 1, we report the results of the application of the normality tests to the #) = 169269

available pipes. The first two columns show the numbers of measurement sections in which270
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quantiles ? = 0.01 and ? = 0.05, respectively, do not present a normal behavior. From these271

results, we can derive the portion =?
#

of pipe sections in which the behavior can be considered272

normal (last two columns). We have also verified that the pipe sections where distributions are not273

proved to be Gaussian are between pipe sections where they are. The closeness of the ratios =?
#

to274

1 and the low credibility of having pipe sections with distributions that are different from those of275

the neighbors lead to conclude that distributions can be considered Gaussian everywhere.

)4BC ? = 0.01 ? = 0.05 =0.01/# =0.05/#
(ℎ0?8A> −,8;: 7 8 0.94 0.93
�ℎ8 − B@D0A43 13 6 0.88 0.95
!8;;84 5 >AB 14 8 0.87 0.93

TABLE 1. Results of the normality tests for the 1st and 5th percentiles of the drift (Section 2) for
the 169 pipes.

276

Figure 2 shows the behaviour of the correlation coefficients for -0.01 and -0.05, which are277

estimated through the procedure presented in Section 3.
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(a) Correlation coefficient of -0.01
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(b) Correlation coefficient of -0.05.

Fig. 2. Correlation coefficient behaviour for -0.01 and -0.05. Abscissa is not detailed for confiden-
tiality.

278

To verify the stationarity of the random fields, we use the augmented Dickey-Fuller and the279

Phillips-Perron tests, which both reject the null hypothesis for both -?, ? = 0.01 and ? = 0.05,280

with a significance level U = 0.05. This confirms the stationarity of the random fields and allows281
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us using the Rice’s formula (Eq. (13)) to evaluate the pipe rejection probability (Table 2).282

283

? = 0.01 ? = 0.05
%
)�
? (!) 0.98 0.04

TABLE 2. Pipe rejection probability

The rejection probability is very large when considering the first percentile, %)�0.01(!) ≤ 0.98,284

whereas it is very small when considering the fifth percentile, %)�0.05(!) ≤ 0.04. In words, we are285

almost sure to reject the worst 1% of the pipes due to drift non-conformity and we are confident286

that 95% of the pipes almost surely fulfill the drift requirement )� . It is important to keep in mind287

that since the original data have been arbitrarily re-scaled, the obtained results are not indicative of288

the actual production performance. Figures 3 and 4, show the behavior of %)�? (!), with ? = 0.01289

and ? = 0.05, respectively, as a function of the difference between threshold )� and mean value290

`?. The larger the distance, the smaller the probability of downcrossing. Figures 3 and 4 also291

show the mean number of downcrossings, E
[
*
)�
? (1)

]
as obtained from Eq. (13), and the value292

%0
? = %

{
-?,1 ≥ )�

}
, which is, obviously, standard normally distributed.293

Finally, Figure 5 and Figure 6 show, respectively, the boxplots of X0.01 and X0.05 along the final294

portion of the pipe length (the remaning part is not shown for confidentiality). In agreement with295

the obtained results, X0.01 overlaps )� = 42.13 almost everywhere, whereas X0.05 is almost every-296

where far above that same threshold.297

With respect to the conformance probability of a specific pipe, we have to update the Gaussian298

field with the measurements collected from the specific pipe, as described in Section 3.2. Figure299

7 shows the posterior distribution along the final portion of the pipe length on one out of the #)300

pipes, say 9 ′, obtained considering all its available measurements: A? = I# , & = 0. From Eq. (22),301

we can see that this entails �
? |x 9

′
?
= 0. For this specific pipe 9 ′, Γ 9

′

0.05 = 1, whereas ' 9 ′ = 0.98.302

303

304
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Fig. 3. Rejection probability with respect to -0.01 as function of )� − `0.01.
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Fig. 4. Rejection probability with respect to -0.05 as function of )� − `0.05.

5 SENSITIVITY ANALYSIS305

To strengthen the results of the case study, we perform a sensitivity analysis on two factors306

relevant for the proposed methodology:307

• The number of measurement points, =.? , collected for each pipe;308

• The uncertainty in the gathered measurements.309
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Fig. 5. Boxplot of -0.01 along the pipe length.
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Fig. 6. Boxplot of -0.05 along the pipe length.

To analyze the effects of these variables, we consider the utility function �:310

� = )% · B)% + )# · B)# + �% · B�% + �# · B�# (27)311

where )%, )# , �% and �# represent the probabilities of true positive (i.e., purchasing of a non-312

drifting pipe), true negative (i.e., scrapping of an drifting pipe), false positive (i.e., scrapping of313

a non-drifting pipe) and false negative (i.e., purchasing of a drifting pipe), respectively, whereas314

B)%, B)# , B�% and B�# represent the corresponding costs. The value of B)% has been arbitrarly set315
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Fig. 7. Random field updating when Y? = x 9
′
? , with ? = 0.05.

equal to 100$, whereas the values of B)# , B�% and B�# have been scaled on B)%: B)# = −0.5 B)%,316

B�% = −1.5 B)% and B�# = −5.5 B)%.317

5.1 Number of measurement points318

We investigare the impacts of the number of measurement points on the estimation of:319

• The downcrossing probability.320

• The drift conformance probability of the specific pipe.321

Influence on the a priori estimation of the downcrossing probability322

We are now considering the a priori probability. Then, we can assume that �% = 0 and �# = 0323

for any estimated kernel and that B)% and B)# consider the effects of wrong a priori estimates.324

The reference expected utility E[�Δ] relates to the case in which the set of measurements is325

complete and with no uncertainty. For example, in case of ? = 0.05, we have )# = 0.04 and326

)% = 1 − 0.04 = 0.96 (Table 2), whereby E[�Δ] = 0.96 · 100 − 0.04 · 50 = 94$.327

We estimate the utility E[�U] as a function of the increasing distance UΔ , U > 1, between two328

consecutive measurement points. To do this, we re-estimate the covariance function through Eqs.329

(7 - 9) for each value of U, and, on this basis, re-estimate)% and)# . Figure 8 shows the covariance330

function for different values of U: the estimations are accurate up to U ≤ 5.331
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Fig. 9. Cost function as function of distance UΔ between two consecutive measurement points.

Figure 9 shows the behavior of E[�Δ] − E[�U]: the larger the value of U, the larger the loss of332

information about the field; this leads to an increment of the negative term of the cost function,333

i.e., �# . The non-monotonic behavior in Figure 9 is explained by Figure 8. Although in general334

larger distances UΔ lead to less accurate estimations, however this is not true everywhere: slightly335

more distant points can provide slightly more accurate estimations of the covariance and, thus, of336

the downcrossing probability (Figure 8).337

338
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Fig. 10. Random field updating by means of noise-free measurements using (a) one measurement
point, (b) ten measurement points and (c) all the available measurement points.

Influence on the estimation of the specific pipe drift conformance probability339

Consider the covariance K? estimated on points G 9
?,8
, ? ∈]0, 1[, 8 = 1, ..., # , 9 = 1..., #) .340

We now investigate the effect on the a posteriori estimation of pipe drift conformance probability341
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of changing the number of available measurement points used to update the Gaussian field. For342

example, Figure 10 shows the field updating obtained with different numbers of points for one out343

of the #) pipes of the available dataset, say 9 ′′. Specifically, Figure 10-(a) shows the case in which344

a single measurement is collected along pipe 9 ′′. In this case, the uncertainty of the field is zero at345

the measured point and is narrower than before along the pipe because of the covariance function.346

Increasing the number of points to 10 (Figure 10-(b)), the uncertainty decreases significantly.347

Finally, in Figure 10-(c) we can see that the uncertainty is zero when A? = I# . In this respect,348

notice that in the case in which the entire set of measurements is used to update the field, the349

knowledge of the correct kernel has no effect on the final drift conformance probability estimation:350

as mentioned before, �? |Y?
in Eq. (22) always reduces to 0, whatever the kernel is.351

The results of the estimation of the drift conformance probability for the specific pipe 9 ′′ obtained352

by means of the Monte Carlo procedure with different numbers of measurement points are reported353

in Table 3. In this case, we apply both Eq. (24) and Eq. (26). The non-monotonic behavior is due354

to the set of measurement points selected for this specific case.355

To estimate the economic effects of the reduction of the measurement points, we rely on the value356

of information VoI(Yp), which is defined as the difference between the expected utility achieved357

when we have a full knowledge of the field X? and when the available set is Yp:358

+>� (Yp) = E[� (X?)] − E[� (Yp)] (28)359

where we set:360

E[� (X?)] =
#)∑
9=1

(
' 9 · B)% + (1 − ' 9 ) · B)#

)
(29)361

362

E[� (Y?)] =


∑#)
9=1

(
' 9 · B)% + (1 − ' 9 ) · B)# + ΔA 9 · B�%

)
8 5 ΔA 9 > 0

∑#)
9=1

(
' 9 · B)% + (1 − ' 9 ) · B)# + |ΔA 9 | · B�#

)
8 5 ΔA 9 < 0


(30)363
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where ΔA 9 = ' 9 |x 9? − ' 9 |y 9?.364

In words, VoI represents the maximum amount of money that is worth to pay for getting accurate365

measurements.366

Table 4 reports the VoI as a function of the number of measurement points. Considering noise-free367

measurements, the loss is significant both when 1 and 10 measurement points are considered.368

1 ?>8=C 10 ?>8=CB �E4AH ?>8=C

' 9
′′ 0.86 0.89 0.95

'̂
9 ′′

0.05 0.9189 0.9128 1

TABLE 3. Drift conformance probability of the specific pipe as function of the number of
measurement points.

1 ?>8=C 10 ?>8=CB �E4AH ?>8=C

+>� -26.4 -9.04 0

TABLE 4. Value of Information as function of the number of measurement points.

5.2 Measurements uncertainty369

We now consider the uncertainty in the drift estimates, which is modeled as a Gaussian noise,370

with respect to the true measured value (Eq. (17)).371

Figure 11 and Figure 12 show the random field updating of the specific pipe 9 ′′, in case of different372

values of the noise standard deviation, fn . The uncertainty is no longer zero in the measurement373

points. In these cases, Monte Carlo samples do not overlap on a single line.374

Table 5 shows the drift conformance probability estimation for the specific pipe 9 ′′, considering375

all the measurement points. From the first column, it can be noticed that the drift conformance376

probability estimation is very different from the corresponding one in Table 3.377

Table 6 reports the VoI as a function of the number of measurement points. The results reported378

in Table 5 and Table 6 are obtained considering the average over one hundred Monte Carlo sample379

for each pipe in order to take into account the variability in the measurements induced by the380

noise. Considering noisy measurements, the lack of precise knowledge on the measurements leads381
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Fig. 11. Random field updating by means of noisy measurements using (a) fn = 0.05, (b) fn = 0.1.

to significant losses. This entails that the investment in technology that increases the accuracy is382

valuable.383

fn 0.05 0.1 0.5 1
' 9
′′ 0.94 0.93 0.91 0.89

'̂
9 ′′

0.05 0.5266 0.5011 0.6579 0.7435

TABLE 5. Drift conformance probability for the specific pipe as a function of the noise standard
deviation fn .

fn 0.05 0.1 0.5 1
+>� -1.10 -2.04 -9.22 -15.71

TABLE 6. Value of Information as a function of the noise standard deviation fn .
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Fig. 12. Random field updating by means of noisy measurements using (a) fn = 0.5 and (b) fn = 1.

6 CONCLUSIONS384

In this work, we have developed a methodology to a priori estimate the rejection probability385

of pipes for deep sea application and a posteriori estimate the drift conformance probability of a386

specific pipe, based on the actual measurements.387

The method is based on the Gaussian fields theory, which rely on a kernel function. Instead of388

using an analytical kernel, we have used its numerical approximation. Then, we have applied Rice’s389

formula for the estimation of the rejection probability and a Monte Carlo sampling approach for the390

estimation of the specific pipe drift conformance probability. The methodology has been applied to391

a dataset of pipe geometrical parameters derived from a real case study, collected at discrete points392

along the pipes length. The method has been shown to provide results in accordance with experts’393

estimations.394
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Finally, a sensitivity analysis with respect to the number of measurement points and the related395

uncertainty has been proposed. It has been shown that these two aspects can strongly affect both396

the a priori and the a posteriori estimations.397

Future research work will focus on addressing the issues considered in this work, but relaxing the398

assumptions on field stationarity and normality. Moreover, efforts will be devoted to investigating399

how analytical kernels can be used even if their shapes are expected to strongly vary based on pipe400

characteristics. Moreover, the theoretical framework proposed will be extended to the other pipe401

quality factors.402

403

Data Availability Statement404

Some or all data, models, or code generated or used during the study are proprietary or405

confidential in nature and may only be provided with restrictions.406
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