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Abstract

In performance-based regulation paradigms, national authorities offer incen-
tives to distribution system operators to develop plans for increasing the
network resilience against natural hazards, such as heat waves, hurricanes,
rain bombs, flooding. In this paper, we propose an approach, compliant with
the Italian performance-based regulation framework, to prioritize renovation
actions on sections of electrical power distribution networks for improving
resilience against heat waves. The approach is made up of three steps, each
addressed through a novel methodology: i) define the hazard of interest, i.e.,
heat waves; ii) estimate the reliability of the network branches; iii) prioritize
the renovation interventions on the network to improve its resilience. The
methodology has been applied to the medium voltage distribution network
of Milano, Italy, yielding the identification of prioritized intervention actions
to submit to the authority for incentives.

Keywords: Power distribution networks, Resilience, Heat Waves,
Reliability of branches, Performance-Based Regulation, Accelerated Failure
Time, Markov Chain, Logistic Regression.

Preprint submitted to Elsevier August 29, 2022



1. Introduction

Reliability metrics such as Customer Average Interruption Duration In-

dex (CAIDI), System Average Interruption Duration Index (SAIDI), System
Average Interruption Frequency Index (SAIFI), Customer Average Interrup-
tion Frequency Index (CAIFI) and others, are widely adopted by Distribution
System Operators (DSOs) for measuring the reliability of Electrical Power
Distribution Networks (EPDNs) and demonstrating the capability of coping
with power outages that occur under relatively normal conditions of opera-
tion [1].
These metrics, however, are not appropriate to assess the capacity of EPDNs
of providing service continuity in case of extreme natural events, e.g., Heat
Waves (HWs), earthquakes, hurricanes, flooding, etc., which force the net-
work to operate beyond design conditions. Failures caused by these extreme
events can lead to extensive and long-lasting interruptions, also in EPDNs
serving large urban areas [2, 3, 4]. Accordingly, many national authorities,
including the Italian Regulatory Authority for Energy, Networks and En-
vironment (ARERA), have introduced the concept of resilience into their
regulatory frameworks [5, 6].

1.1. Resilience of EPDNs

In the context of EPDNs, resilience refers to the ability of the network to
continue operating and delivering power even when Low-Probability High-
Consequence (LPHC) disruptions occur [7, 8]. Then, designing and managing
for resilience aim at providing the EPDN with the capability of absorbing,
recovering from and adapting to disruptions, to minimize their consequences
9].

Formal definitions, metrics and methods for analyzing and operationalizing
grid resilience are currently being discussed and under development [10],
also considering interdependent critical infrastructures [11]. For example,
[12] presents a framework for evaluating power grid resilience based on a real
blackout occurred in south Australia in 2016. In [13], a method is proposed
to evaluate the resilience of EPDNs by focusing on the impact of critical
loads under extreme weather events, whereas [14] presents a resilience-based
framework for optimal switch placement in distribution systems. Concerning
the hurricane natural hazard, a framework for evaluating the power system
resilience is presented in [15], whereas a method to optimally allocate gener-
ation resources is proposed in [16]. A full-time scale resilience enhancement



framework against ice disasters is proposed in [17]. A quantitative frame-
work for assessing resilience against extreme weather events is proposed in
[18]. Finally, [19] investigates the impact of extreme HWs and drought events
on the resilience of power grids fed by renewable energy systems.

At present, no grid resilience definition, metric or method of evaluation have
received universal acceptance [1]. Nonetheless, incentives are offered to DSOs
by national authorities to develop plans for increasing the network resilience,
within Performance-Based Regulation (PBR) paradigms.

1.2. Performance-Based Regulation for resilience incentives

PBR is a regulatory framework to encourage, typically by explicit finan-
cial incentives, regulated companies such as utilities, to achieve pre-fixed
performance goals [20]. A significant discretion is granted in developing the
plans, to allow the companies to leverage their abundant knowledge of the
operating environment for successfully achieving the goals.

PBR has become increasingly popular worldwide, yielding significant inroads
in many regulated industries, including the energy industry [20], where reg-
ulators continuously share their regulatory structures in an effort to under-
stand and compare the approaches of each other. As a consequence, the
regulatory paradigms have increasingly converged, with a general growing
emphasis in performance and quality of service [21]. Nonetheless, a variety
of regulatory models will continue to coexist in the short term future ([21]),
which limit the applicability of any method to improve network resilience
to the PBR framework it has been devised for, unless it is opportunely cus-
tomized. Obviously, this does not diminish the value of the research in the
field. Rather, the larger the number and variety of proposed approaches, the
more informed is the path to converge towards a common basis.

In Italy, ARERA issued the national PBR approach, resolution 668/2018/R /eel
[22], which builds on i) the concept that interruptions due to extreme events
have to be quantitatively measured by network resilience metrics, rather than
reliability metrics: ii) the approach of giving incentives to DSOs for strength-
ening the power supply continuity performance in case of natural hazards.
To apply for obtaining the incentives, DSOs have to prepare a three-year
plan for implementing these actions.

Depending on the territory where the DSOs operate, the main natural haz-
ards to be considered are:

e HWs and long periods of drought;



Intense snowfalls, causing the formation of ice or snow sleeves wet snow
[23];

Floodings due to intense rainfall;

Wind storms and effects of salt pollution nearby the seaside;

Fall of trees on overhead lines.

1.3. Context, objectives and novelty of the work

We consider the EPDN of Milano (Italy), consisting of about 600 Medium
Voltage (MV) feeders at 23 kV, and about 880’000 Low Voltage (LV) cus-
tomers served by more than 6’000 MV /LV substations.

In this specific case, HWs are the main natural hazard to be considered
to prepare the resilience plan compliant with the PBR approach. Indeed,
HWs have affected almost 1 million people in the last 10 years, whereas, for
comparison, flooding, the second most relevant hazard, has affected “only”
70’000 customers in the same period [24]. Moreover, in the forthcoming years
climate change is expected to make HWs more intense and frequent than be-
fore.

The proposed framework is based on the following steps, each addressed
through a dedicated innovative approach:

1. HWs definition. To set the PBR incentive policy and develop valu-
able resilience plans, a clear definition is needed of the extreme events
that determine the "beyond design” conditions, which shift the focus
from reliability to resilience. At present, this definition is lacking for
HWs. The novelty of the contribution lies in that we propose to frame
the HWs definition as a supervised classification problem, addressed by
the logistic regression algorithm [25, 26].

2. Characterization of the reliability of the network branches.
We develop an Accelerated Failure Time (AFT) model [27], which en-
codes the main covariates influencing the reliability behavior of the net-
work branches, i.e., network arcs from substation to substation. The
approach is novel in that it allows estimating the reliability of long-time
operated networks, which are characterized by lack of registry data, in-
homogeneity of component materials and technologies, and variability
of operation settings.



3. Prioritization of the renovation interventions. The novel con-
tribution of the approach devised to address this step is the combina-
tion of a Shortest Path Problem (SPP)-based algorithm [28], to identify
specific portions of the network, with Markov chain [29] modeling, to
provide a quantitative basis to identify the portions for which renova-
tion actions bring the largest benefit to network resilience.

Overall, the full-fledged approach proposed to prepare a plan compliant with
the PBR framework is a furher novelty of the contribution.

The remainder of the paper is as follows. In Section 2, we propose an ap-
proach for the quantitative definition of HWs. In Section 3, we develop a
reliability model for the branches of the network. In Section 4, we develop
the approach to identify the renovation actions to take for increasing the
EPDN resilience. In Section 5, the presented framework is applied to the
EPDN of Milano, Italy. In Section 6, conclusions are drawn.

2. Heat waves definition

HWs are due to extremely hot weather conditions, and result in both the

reduction of the heat transfer from cables to soil and the increase of power
demand caused by the massive and simultaneous use of air conditioning.
When these conditions last for some days, the network cables can reach high
temperatures, even 30°C larger than in the winter season, with consequent
heavy thermal stresses causing multiple failures. Additional details on the
impacts of rising ambient air temperatures on electric transmission ampacity
and peak per-capita can be found in [30], whereas the impact of HWs on the
energy systems is analyzed in [31] from a more general perspective.
We propose a data-driven framework for the quantitative definition of HWs.
The same issue is tackled in [32] with an unsupervised Gaussian mixture
clustering approach [33, 34]. The method is applied to temperature and
relative humidity data collected in Torino, Italy, over a period of 10 years.
The framework proposed in [32] suffers from the following limitations:

e the unsupervised framework allows characterizing the different climate
conditions, but these are not directly linked to the failures occurred,
i.e., the information about the failures is not fully exploited;

e from the analysis of the results reported in [32], it emerges that the
unsupervised framework is not capable of properly isolating the HW



periods. Rather, it separates the summer period from the rest of the
year: almost 35% of the yearly data is included in the cluster with
large temperature and small humidity values. The proportion of days
associated to large temperature values, more than one third, is too
large to be a proper indicator of HWs. It cannot be considered as an
extreme event, i.e., LPHC disruption;

e 1o account is given to the loading conditions of the network, although
it is known that they strongly affect the cables temperature and, thus,
their failure behavior.

To advance on these issues, we resort to supervised classification, which
means learning a function that maps input data onto an output class, based
on example input-output pairs (e.g., [26, 35]). Although there are plenty of
algorithms for supervised classification (e.g., [36]), to the best of the authors’
knowledge the proposed approach is novel with respect to those already avail-
able in the literature, as it uses supervised learning to systematically define
HWs by creating a quantitative association between failure data and envi-
ronmental and operating conditions of the EPDN.

We consider HWs as those periods in which the weather and operating con-
ditions of the network are such to determine failure occurrence behaviors
statistically different from those of other periods, which are considered of
normal failure behavior. To translate this intuitive concept into a quantita-
tive definition, we relate the number of occurred failures to weather condi-
tions and network loads. Specifically, we consider the following data, limited
to M days of the period May-September and recorded for Y years:

e total daily load of the electricity network. In the case of Milano, these
are sampled every 15 minutes at the HV/MV transformers;

e temperature and relative humidity. For the Milano case study, these
data are collected from weather stations every 10 minutes;

e failure data. These are relevant to cables and joints, only. Thus, we do
not consider substation failures, as these are typically not associated
with HWs. Yet, we consider only the failures whose causes are not
associated with others hazards, e.g., floods. We define ¢(t) as the
variable which counts the number of simultaneous failures at time step
t. The data encode the timestamps of the failures.



We define the HW period of A days in which more than F' failures occur.
F € [Fin, Finaz) is the discriminating threshold to be identified for distin-
guishing between normal and HW conditions, with respect to failure occur-
rence. The values F),;, and F,,.. are selected by an Inter Quartile Range
(IQR)-based outlier detection procedure [37], setting F,,;,, as 3-rd quartile +
1.5- IQR and F},;, as 3-rd quartile + 4 - IQR.

The samples of Y years recordings are appended one after the other, so that
the complete dataset includes D = L%J Y samples, where |[J] denotes
the integer part of its argument. The timestamps of the A-length windows
are given by Eq. 1, where t5, identifies the date of the J-th sample of year
y € {1,...,Y} and ¢y, is pre-fixed for all the years considered. Notice that,
for simplicity, in Eq. 1 we assume that % > L%J

Formally, label y; = 1 identifies the HW in the dataset as the A days corre-
sponding to period Tg = [ta— A, t4] in which at least F' failures have occurred,

de{l,...,D}; ys = 0 is the label assigned to the opposite case.

td:t@y—}—A
M
d=(d—1) mod \‘KJ
— M _|_1
Y
d=1,...D (1)

To identify the conditions that define the HW occurrence, we extract
I features from the load, temperature and humidity data, including maxi-
mum, minimum, average, standard deviation, skewness and kurtosis, each
calculated on W different time windows, i.e., 3 days, 5 days, 7 days, 10 days,
15 days, 20 days. These feature values are arranged in vector z; € RI'W,
d € {1,...,D}. We then build a classifier function § = f(z) mapping the
generic vector of environmental and operating condition features z, onto the
indicator of HW occurrence.
For supervised classification, we rely on a binary logistic regression classi-
fier with elastic-net penalties to automatically select the features of interest
among those I - W considered [25, 26]. The logistic regression problem reads
as in Eqs. 3-6. Namely, the logistic regression in Eq. 3 provides the probabil-
ity P(y = 1|z) that the prediction 7 is equal to 1, depending on the features
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values z and the corresponding coefficients ae. Once the logistic regression
classifier is trained, we can set prediction y = 1 (HW occurs) if and only
if pa(z) > 0.5. The probability value py(z) can be regarded as the degree
of confidence in our prediction g, in this case beyond coin-flipping random
prediction.

With respect to Eq. 5, two issues must be considered when building a clas-

sifier of HWs:

e the two classes of HWs and normal conditions are unbalanced: the HW
periods are far fewer than the normal conditions ones, i.e., 25:1(1 —
Ya) >> Zle(yd). Then, considering the overall accuracy of the clas-
sification as loss function may lead the classifier not to successfully
identify the class of interest, y4 = 1;

e to be conservative, it is more important to limit the number of False
Negatives (FNs), i.e., observations for which y; = 1 and g4 = 0, than
the number of False Positives (FPs), i.e., observations for which y; =
0and g4 = 1, d € {1,...,D}. Indeed, rather than not triggering
alarms when the HW risk is high, it is preferable to warn of the risk
of an anomalous number of them, even if it is not true that they have
occurred. This is in agreement with our definition of HWs: even if the
considered dataset contains multiple periods of hot weather conditions,
these are not necessarily associated to large numbers of failures.

To address these issues, in Eq. 5 we impose that in the training phase the
weight of the FNs error is £ = 20 times that associated with the FP error.

Coefficients w; and wq of the ¢; and ¢y penalization values, e.g., [26], in
Eq. 4 are chosen by C'—fold cross-validation, combined with threshold F
optimization [38]. Thus, the available dataset F is partitioned into C' folds
containing time windows of equal duration. Set F. C {1,..., D} contains
the D = \_%J indexes of the data in the c-th fold, ¢ =1,...,C. We solve the
classification problems C. by training the algorithm on C'—1 folds, containing
the D = [ |. (Y —1) data [zg, y] such that d € {1, ..., D} \ F., and testing
the accuracy of the classification on data [z4,y4], d € F.. The procedure is
repeated on all C' folds. Finally, we select the penalization parameters, the
threshold F)' and o of the classification problem with the largest Balanced



Accuracy (BA) shown in Eq. 2:
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The optimized parameters o characterize the relative importance of the
various features, i.e., a7 ; represents the contribution of feature z4; to defin-
ing output ¢4. Notice that the penalization parameters w; and ws may set
some coefficients to 0. This allows performing feature selection directly in the
training phase: o = 0 indicates that feature z;, has no significant impact
on gg,de{l,...,D},ie{l,...,I-W}

Notice also that the optimization of F' entails that the HW is defined by the
set of environmental and operating conditions, which allow fixing a threshold
on the number of failures that best distinguishes the HWs from the normal
conditions.

Finally, the choice of relying on logistic regression rather than on other super-
vised classification algorithms is twofold. On the one hand, logistic regression
with penalization does not suffer from the curse of dimensionality like other
algorithms, e.g., K-nearest-neighbour [39], and generally provides good clas-
sification results and features selection when trained with a large number of
features. On the other hand, unlike support vector machines [40], random
forests [41], neural networks [42], it has a faster training phase and provides
results that are easy to interpret by experts.



3. Characterization of the network branches reliability

Once the HW conditions are identified, we have to characterize the re-
liability of the network components under these stressing conditions. This
issue is very challenging in practical applications, due to the following main
reasons:

e in case of failure, usually only the failed part is repaired. On the
one hand, this restoration policy allows DSOs to extend the life of
the cables beyond the manufacturers’ recommended lifetime [43], while
limiting the maintenance costs and avoiding the setting up of large
construction sites for digging. On the other hand, it makes the branches
of the networks with long operational history, as in the case of Milano,
extremely inhomogeneous: the situation typically encountered is that
a branch is made up of portions of cables of different lengths, diverse
insulation and conductor materials, connected by joints of very different
technologies;

e the electrical networks are extremely dynamic systems: both their topo-
logical and operating configurations change in time. This makes the
stressing conditions very variable and difficult to be traced over long
time horizons [44];

e the very long operating time of the networks of many large cities, in-
cluding Milano, makes the knowledge of the network characteristics and
history incomplete: a significant part of the network was installed or
repaired before the advent of digitization, whereby the corresponding
information is often missing in the databases.

e Failure data mostly relate to normal operating conditions, rather than

HWs.

Different models have been proposed to estimate the reliability of electrical
components, also considering the effect of the influencing factors, e.g., [43],
[45], [46]. However, these models require the knowledge of the whole oper-
ating profile of each network part, from its laying date, and homogeneity of
part characteristics. As mentioned before, these data are usually lacking for
aged networks.

To give due account to all these issues and fully exploit the available limited
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knowledge, we propose a novel AFT reliability model at branch level, con-
sidering the known available characteristics as covariates [27].

Formally, the network is made up of branches b € {1, ..., B}, whose reliabil-
ity depends on relevant covariates f;, @ € {1,..., N}. The failure rate A, of
branch b reads as in Eq. 7 :

Ao (8 fros oo ) = Ao - € 2i=1 Pifio=BIn(t) (7)

where )\ is the base failure rate; g;, ¢ = 1, ..., N, are the weights associated
with the selected covariates, which can accelerate or decelerate the degrada-
tion process; I,(t) is the HW indicator. This latter is set to 1 in case of HWs
and 0 otherwise. * sets the increment of failure rate during the HW.
Notice that considering I (t) as a covariate allows using failure data in both
HW and not HW conditions to infer the model parameters.

The set of covariates relevant to predict the component reliability is selected
from those derived from the available data. In the case of the MV network
of Milano, the following are considered:

e cable characteristics. We consider the insulator material, i.e., cross-
linked polyethylene (XLPE), different types of rubbers and papers [43],
and the conductor material, i.e., aluminium and copper [47]. For each
branch, we know the length and position of each piece of cable, whose
edges terminate either in joints or in links to the substations or busbars.
The laying date of most of the cable portions is unknown;

e joint characteristics. Joints are of different technologies, developed over
the years, and are normally the weakest parts of the branch [48]. For
each branch, we know the exact number and position of joints. The
laying date of most of the joints is unknown;

e past failure events on busbars and feeders, i.e., sequences of branches
starting from the High Voltage (HV) busbars. This factor can be rel-
evant because the overcurrents originated by the failure of one branch
of a feeder accelerate the degradation of the upstream branches. No-
tice that the exact number of overcurrent events experienced by each
branch is unknown, as this would require tracking the branch position
with respect to the failure through the entire lifetime, which is very
challenging due to the variability of the network configuration. To
sidestep this issue, we assume that the effects of an overcurrent can
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be estimated as if the actual network configuration were the same as
in the past. Indeed, the information we want the model to capture is
that the first branches of the feeder are overstressed and, thus, more
prone to fail if they have already failed: whichever the actual network
configuration was when the failure occurred, the first branches of the
current feeders are likely to have been the first also in the past;

e current load on the branches, obtained through a power flow model.
The value considered is static: it refers to a specific time instant, which
is the load peak in the last year. This pointwise load value can be in-
terpreted as the load distribution among the various sections. This is
an over-simplifying assumption, which is necessary because considering
the load variation over long periods would require very long computa-
tional times. This issue will be tackled in future research work, e.g.,
following [49, 50].

Based on the aforementioned information, we have derived N >> 1 covariates
such as the total length of each insulator material, its percentage with respect
to the branch, the total number of joints, also divided by the cable length,
the number of joints connecting two different insulators, etc.

The model parameters are maximum-likelihood estimated, by considering
for each branch b € {1, ..., B} with known covariates f;;, i = 1,..., N, both
the failure times and the righ-censoring time at the end of the observation
window [2]. Namely, each branch has at least one associated event:

e censoring time at the observation period. In case the branch had no
failures, which applies to the vast majority of branches, the censoring
interval starts at the beginning of the observation period; otherwise, it
starts from the last failure;

e the failure times.

Thus, we have a set of G > B times ty,1s,...,tg, each associated to the
characteristics of the branch and to the binary flag &, &, ..., & indicating
whether the time refers to a failure or to survival until the end of the obser-
vation window.

To eliminate the less influencing covariates, we have used the backward elim-
ination technique, with different threshold values for the p-value [51]. Then,
we have selected the model with the covariates yielding the best Akaike In-
formation Criterion (AIC) value [52].
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It is worth concluding this Section with some comments about the assump-
tions underlying the model in Eq. 7:

e the failure behavior of the single branch, inferred from a Y-year time
window, obeys the exponential distribution, with the memoryless prop-
erty. This assumption is not very limiting if we use the reliability model
for short-term predictions, as in the case of resilience plans. Indeed,
the increase of the failure rate due to wear out is not expected to be
very fast. Moreover, we still consider the degradation due to aging: the
covariates describing the characteristics of cables and joints depend on
their age.

e the failure rate is different in HW and out-of-wave periods. Therefore, if
we want to apply the model in Eq. 7 over time windows longer than the
HW period, the failure rate is stepwise constant. Yet, the assumption
that the yearly average of HWs frequency is constant entails that the
memoryless assumption is still satisfied: a more rigorous approach will
be developed in future research work, e.g., building on [53];

e we assume that the branch characteristics have remained constant over
the Y-year period. While not satisfied, this assumption is still accept-
able if Y is sufficiently short: given the size of the network, changes
in the short-term past concern only a small portion of the network.
Moreover, we favour covariates that are not sensitive to the small mod-
ifications of the network;

e the covariates are normalized. This implies that we are interested in
their relative values, i.e., with respect to those of the other branches,
rather than to their absolute values.

4. Prioritization of interventions for resilience improvement

The Italian PBR framework for resilience incentivizes the renovation ac-
tions that in case of hazardous conditions, e.g., HWs, prevent the long cus-
tomer disconnections that occur with frequency larger than 1/50y~t. In this
Section, we develop an approach to identify the network sections concerned
with these events, which, in agreement with the PBR rationale, are the sec-
tions that contribute the most to the occurrence of failures entailing long
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disconnections. Then, the interventions to reduce their failure rates are ex-
pected to bring the largest increase in network resilience.
Notice that the reference PBR framework does not consider the number of
customers disconnected in case of failure. However, this criterion can be con-
sidered to prioritize the renovation actions of the network sections fulfilling
the 1/50y~! frequency threshold.
The analysis focuses on the MV feeders, which are the weakest part of the Mi-
lano EPDN: almost 80% of the recorded failures affect MV feeders, whereas
only a few failures are experienced by HV/MV substations or by the LV dis-
tribution network [54].
As in many large cities, the MV network of Milano is topologically meshed so
that when a branch fails, the network operating layout can be rapidly changed
to guarantee the supply to the interrupted customers through another feeder.
However, there can be double-failure events, like that schematized in Figure
1, which do not allow network re-configurations for supplying all customers.
Differently for reliability, resilience is concerned with these double failure
events, as they cause long interruptions.
Notice that one main assumption here is that the network cables are always
available for switching during re-configuration. This is realistic for EPDNs
serving large cities, whose cables are usually operated at a relatively small
percentage (i.e., almost 40% for Milano) of the maximum current load, and
whose substations are all equipped with switching capabilities. Moreover, we
must bear in mind that final aim of the proposed methodology is to support
decision making for planning interventions to improve the network resilience,
whereby temporary conditions in which switching is not possible do not affect
the generality of the approach.

Assume that the first failure occurs on the branch outgoing from vertex
1, i.e., the first part of the feeder. This is in agreement with the experience
that failures are more likely to occur on these parts of the grid, loaded with
the whole power delivered by the feeder. In case of an outage in vertex 1, an
alternative path is needed to supply the red subsection: the first branch of
the feeder from vertex 4 to vertex 2 has now to carry the whole power of the
subnetwork highlighted in red. If a second failure occurs on the most loaded
part of the network, i.e., close to 4, all the MV /LV substations in red remain
not supplied until one of the two paths is repaired by field operators. The
red subnetwork is defined as section and indicated by I'. This situation is
very critical in the case of underground cables, because the time to find and
repair the outage can be long.

14
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Figure 1: Double-failure event and MV /LV affected by power outage.

On this basis, to develop the plan to improve resilience against HWs, we

first develop a novel algorithm to identify all the I' sections 7y, ...,y of the
network exposed to potential double-failure events, as the red one shown in
Figure 1. The arcs of y; are {s;1,...,s;s,} C{1,..., B}, S; = ||, 7 =1,...,T.
Algorithm 1 in Appendix provides the pseudo-code to identify the I' sections.
Then, we estimate the probability of occurrence of a double-failure event for
each section, based on the estimates of the failure rates of the individual
branches. For this, we rely on a continuous time multi-state Markov model
[29].
Practically, the resilience of these sections can be increased through two main
actions: replacement of weak cables and increasing of meshing. In the former
case, we aim at reducing the probability of occurrence of the first failure
event, whereas in the latter at improving the restoration of the power supply
in the section upon the first failure occurrence, by laying a new connection to
another feeder. An example of this latter action is shown in Figure 2: it does
not change the probability of a single failure, but the probability of double-
failure events decreases when a new connection is built, as the set of possible
additional failures that can disconnect customers in the new configuration is
reduced [55].

4.1. Markov model for double-failure events occurrence probability estimation
To develop the Markov model, we make the following assumptions:

e we consider the HW periods only. Thus, Ay (t|fip,..., fvs) = AP =
Ao e~ L1 B fiv=B" g constant;

e the effects of the failure of one branch on the reliability of the other
branches is negligible, although it generally results in a load increase.
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Figure 2: Action to improve network resilience. Top: initial section setting. Bottom:
proposed intervention for improving resilience.

This assumption is due to the lack of data to quantitatively characterize
this effect and the unfeasible computational burden required to consider
all possible failures;

e the repair time obeys an exponential distribution, with rate pi,,.

Under these assumptions, we can define the S; + 2 model states for sub-
network y; as:

e state 0: all branches of «; are working;
e state ¢ =1, ..., 5;: only the ¢-th branch s;; in «; is failed;
e state S; + 1: there are two failed branches.

The goal is to estimate the time at which the system enters the absorbing
failed state S; + 1 for the first time. This is derived analytically by [29]:

e considering Q;* as the matrix obtained from the transition matrix Q;,
Equation (6), by removing the absorbing state, i.e., last row and last
column;
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e solving the linear problem xQ;-Q;* = [1,0, ..., 0], where x = [z1, ..., 75, 11]
is the vector containing the sojourn times in the different states.

_ -1
e computing the rate of occurrence of the double-failure event as (Zf;o xl> .
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5. Results

This Section reports the results of applying the proposed methodology to
the Milano MV distribution network and discusses the related findings.

5.1. Heat waves

We have considered M = 153, days in the period May-September and
Y = 5 years. For cross validation, C' = 5, each fold containing the data of
one year.

Figure 3 reports the cumulative failures over A = 3 days, i.e., D = % =
255, for the distribution network of Milano, together with some features
selected from those I - W = 144 features extracted from temperature, load
and relative humidity data.

For both confidentiality and visualization, features and failures have been re-
scaled. Thus, the y-axis is quantitatively meaningless and we can only infer
the relationships among these variables. From Figure 3, we can see that there
is a strong correlation between the failure data and the environmental and
operating conditions, especially with the maximum load over three days:
the periods in 2015 and 2019 with the largest numbers of failures are in
perfect correspondence with the load peaks. There is a positive correlation
between the number of failures and the load and temperature data, whereas
the correlation is negative between the failures and the relative humidity;
smaller values of humidity generally correspond to fewer rainy days in the
considered period.

The 10 features selected by the best setting of penalized logistic regres-
sion, i.e., leading to largest BA of Eq. 2 over the cross-validation and
threshold-F' possible combinations, are shown in Figure 4: the y-axis re-
ports the feature coefficients a. Eight statistical features, i.e., skewness of
humidity in 10 days, standard deviation of load over 3,5,7 days, standard
deviation of temperature over 20 days, mean of load over 3,5 days and max-
imum load over 3 days, have a positive value of the associated coefficient,
which indicates that an increase in one of these features results in an in-
crease of the probability of HW conditions. The remaining two features,
i.e., maximum of humidity over 7 days and skewness of temperature over
5 days, have negative coefficients, which indicates that an increase in their
value decreases the probability of having a HW. As already pointed out, a
small value of maximum relative humidity over 7 days is generally associated
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Figure 3: Number of Failures in 3 days and some features extracted from temperature,
load and humidity.

to a sunny week; the skewness of the temperature is an indicator of the pres-
ence of sudden steps in the temperature value. It is worth noticing that the
negative coefficient sign indicates that there is a larger chance of HW when,
in a time window, there is a small proportion of measurements with small
temperature values (negative skewness). The ten features selected seem in
accordance with the literature, e.g., [56]. With respect to [32], it emerges
that:

e in both approaches, large temperature and small humidity values are
proper indicators of the heat conditions;

e the features related to the load, which have not been considered in [32],
are those which mostly affect the number of failures, 6 out of 10, as the
load directly affects the thermal stress on the cables;

e some features are not related to the absolute value of the environmental
and operational conditions; rather, they are related to the presence of
sudden changes, e.g., skewness of temperature, or total variation, e.g.,
standard deviation of load and temperature.

Notice that since the features have been normalized by z-score [39], the values
of the coefficients can be somehow interpreted as the relative importance of

20



the features.
The 5— fold cross-validation performance of the algorithm is reported in

0.3

0.2

0.1

0.0

-0.2

3_mean 5_mean temp20_sd 7_sd umidl0_skew 3_max 3_sd temp5_skew 5_sd umid7_max

Figure 4: Value of the coefficient 8} for the 10 features selected by the elastic-net logistic
regression. When we report only the time window in the x-axis, we refer to a feature
extracted from the load, e.g., 3_mean stands for mean load over 3 days.

Table 1, where for each year the total numbers of True Positives (TPs), True
Negatives (TNs), FNs and FPs and the corresponding Rates TPR = %’

TNR = %, FNR = TPFJFJ\;,N and FPR = inﬁ are reported for all the
3— day periods considered. From the Table 1, it can be noted that there are
only nine periods, sum of columns 2 and 4, in which more than F' failures
have been experienced. For confidentiality reasons, we cannot provide the
value of F'. Eight out of the nine periods have been properly identified by the
algorithm. The only exception is for 2016, where the abnormal number of
failures does not seem related to the environmental conditions: from Figure
3, it can be seen that the peak of failures occurs in a period with a relatively
small load. Despite the apparently large number of FPs, columns 3 and 7,
the total number of days considered by the algorithm as HWs, ¢; = 1, sum
of columns 2 and 4, is in accordance with the environmental conditions of
Milano: years 2015 and 2019, with 11 and 8 HW periods, respectively, have
been among the hottest summers ever [57].

Moreover, 2015 is characterized by many temperature fluctuations, which
are considered risky by the skewness of the feature temperature. On the
other hand, 2016 has been one of the few years in the third millennium with
a summer not characterized by extremely hot days [57] and the algorithm
recognized only 4 HW periods.
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With respect to the F'P metric, we can also see that in spite of the 7 HWs
identified sor 2017 by the algorithm, Figure 3 shows no days with peaks of
failures, although the total number of failures occurred in 2017 is far larger
than that in 2016. This is in agreement with the fact that the HW does not
necessarily provide an abnormal number of failures, but does increase their
probability.

Finally, it is worth noticing that the number of periods with HWs identified
by the algorithm is 35, sum of columns 2 and 3, with S - 35 = 105 days of
HW in 5 years. Very roughly, we can estimate that the average frequency of
extreme hot weather events is 21 days/year.

Table 1: “Confusion matrix” of the Proposed algorithm cross-validation performance; each
fold corresponds to a different year.

Year TP FP FN TN TPR FPR FNR TNR

2015 3 8 0 40 1 0.17 0 0.83
2016 0O 4 1 46 0 0.08 1 0.92
2017 0O 7 0 44 N.A. 014 NA. 0.86
2018 1 4 0 46 1 0.08 0 0.92
2019 4 4 0 43 1 0.09 0 0.91

5.2. Reliability model

The application of the methodology described in Section 3 has led to
the selection of the following N = 3 covariates: the number of failures on
the same primary substation, the number of joints connecting cables with the
same insulation material and the number of joints linking cables with different
insulation materials, i.e., XLPE-paper, paper-rubber, rubber-XLPE. Figure
5 shows the estimated values of the model parameters Ao, f;, i € {1,...3}
and 8*, with corresponding 95% confidence interval. For confidentiality, the
scale of the Y-axis is not reported.

The features are not very sensitive to the network changes upon corrective
maintenance. Indeed, considering that the features are normalized, we do
not expect that the changes on a short Y-year period, i.e., installation of
one or two joints and modification of the cable insulator material for a small
portion of the branch, can modify the feature distributions.

Notice also that A = e - Xy - e"Z=18is where e ~ 7.5. Thus, on
average, during the HW, we expect 7.5 times the failures during normal op-
eration.

22



AO- —a—

Busbar failures

Joints same o
material

Joints different
material

B:

Figure 5: [ factors value of the most influencing covariates, with corresponding 95%
confidence interval.

To validate the model, we have considered the calculation of the Con-

cordance Index (CI) on the test set, within a cross-validation scheme [58].
However, the CI and other similar metrics are hardly applicable to this case
study, due to the very large censoring [59]. The development of dedicated
metrics will be the focus of future research work.
To qualitatively demonstrate the effectiveness of the algorithm in identifying
the correct ranking of the reliability of the network branches, their failures
registered over the Y-year period are ordered by increasing failure rate ans
shown in Figure 6. The curve keeps constant in correspondence of branches
experiencing no failure. The algorithm seems to have good prediction capa-
bilities: the curve grows slowly at the beginning, i.e., for reliable branches,
and fast at the end. Regarding the more reliable branches, we note that out
of 1485 failures, there were only 21 in the first 1000, 51 in the first 2000
and 133 in the first 3000. In contrast, for the less reliable branches, there
were 144 failures in the 50 most critical branches, i.e., some branches failed
multiple times, 224 in the last 100, 590 in the last 500, and 825 in the last
1000. Overall, the model seems capable of capturing the order of criticality
of the various branches.
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Figure 6: Cumulative failures for the considered network branches.

5.3. Renovation plan

The algorithm presented in Section 4 identified I' = 854 sections. Figure
7 shows the distribution of sections S;. There are almost 150 sections with 3
branches only, whereas there are almost 150 sections with S; > 10. To find
the rate of occurrence of the double-failure events, we conservatively assumed
that the values of all the model parameters are those corresponding to the
bound of the 95% confidence interval associated with the largest failure rate:
for A\g we consider the upper bound; for 5; parameters we consider the lower
bounds.
We show the results assuming a value p,,, = 1/(52)h~! away from the HW,
whereas during the HW this increases up to g, = 1/(12)d~!, due to the
limited availability of crews compared to the number of failures. For confi-
dentiality, these values are different from the actual ones. Figure 8 shows the
distribution of the rate of the double-failure events: in more than 50% of the
cases, i.e., 486 out of 854, it is smaller than 3 -1073y~!. In the case of the
Milano EPDN, 53 sections can be considered for renovation, whose double-
failure event is estimated to occur with a frequency larger than 1/50y~!. Of
course, the final selection of the sections to invest on shall consider addi-
tional criteria such as the budget, number of customers supplied, sections
length, consequences on the traffic circulation, etc. Making this decision
within a portfolio decision analysis framework is expected to lead to more
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Figure 7: Number of sections and related number of branches therein.

cost-effective plans [60]. This is another issue that will be tackled in future
research work, e.g., building on [61].

Two interventions proposed by Unareti in the three-year resilience plan are
presented in Figure 9, concerning two sections out of the 53 identified: cable
replacement for Section A, in which the branches with largest failure rates
are highlighted in yellow, and a new connection for section B.

Cable replacement does not entail topology variation, whereby section A will
keep the same extension and serve the same number of customers. With
respect to section B, a new connection has been planned in order to decrease
both the impact and the probability of double-failure events. The new con-
nection changes from 2 to 3 the degree, i.e., the number of connected edges,
of the vertex indicated therein. That is, section B, 7.4 km long, is divided
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Figure 8: Number of sections and related double-failure events rate of occurrence. In
abscissa, we report the intervals of the rate values.

into two subsections of 3,2 km and 4,2 km, respectively. Results of the in-
terventions are summarized in Table 2: these reduce by 80% (section A) and
75% (section B) the current rates of occurrence of the scenarios in which 3213

and 2611 customers, respectively, are disconnected for long times in case of
HW.

Table 2: Benefits of including sections A and B in the resilience plan.
Section Customers Current length New length Current rate New rate % rate red.
A 3213 4.4 4.4 0.0224 0.00446 80
B 2611 74 3.2 4 4.2 0.02597 0.0067 74

6. Conclusion

We proposed a methodology to identify the most suitable renovation ac-
tions to improve the resilience of EPDNs, according to the PBR paradigm
issued by the Italian regulator ARERA. The methodology proposes several
novel approaches:
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Figure 9: Cables of the sections A and B included in the resilience plan.

e HWs are quantitatively defined through a supervised classification al-
gorithm based on logistic regression with elastic-net penalty to relate
temperature, load and humidity data to the heat wave conditions.

The reliability of the network branches is estimated by fully exploiting
the maintenance and operation data typically available for old EPDNs
of large cities, which are characterized by lack of registry data, inho-
mogeneity of component materials and technologies, and variability of
operation setting. The developed reliability model encodes the most in-
fluencing covariates, which turned out to be the number of failures on
the primary substation, the number of joints connecting cables with the
same insulation material and the number of joints linking cables with
different insulation materials (i.e., XLPE-paper, paper-rubber, rubber-
XLPE).
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e Finally, the less reliable network sections are identified through a novel
combination of a SPP-based algorithm with Markov chain modeling.
This approach allows identifying the network sections where a dou-
ble failure event during a HW period is estimated to occur more fre-
quently than once in 50 year. These events affect the network resilience,
whereby renovation actions to reduce the occurrence probability can be
submitted to the ARERA for incentives.

The methodology has been applied to the Milano EPDN, giving interest-
ing results and providing valuable insights. Further research work will focus
on the definition of metrics to validate the prediction model, the enhance-
ment of the reliability model to give account to the stepwise constant failure
rate behavior, the application of optimization models to select the renovation
actions, the efficiency improvement of the algorithm to identify the sections.
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Appendix A. Pseudocode

The algorithm considers all the nodes with at least three branches (lines
9-11) and identifies the sections ; as the shortest paths towards the nodes
of degree larger than 3 or to the HV/MV substations.

Functions node() and arc() (e.g., line 16), return the IDs of the nodes and
arcs, respectively, of the input path.

Function Reduce allows eliminating the single branches like that from node
3 to 2 in Figure 1. These are encoded in node 2 through arrays V5 and Fj.
Notice that the algorithm does not consider the direct links among HV/MV
substations. These have been excluded from the overall analysis, due to the
very different operating conditions.

Finally, the efficiency of the algorithm can be improved. This will be done
in future research work.
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Algorithm 1 Section Identification

1:

10:
11:
12:
13:
14:

15:
16:

17:

18:
19:
20:

21:
22:
23:
24:
25:
26:

Build graph G = (V, E) from the network shape file >V ={1,...,v},
E=A{1,.., B}

Identify set P C V of HV/MV substations

stop := False

for all i € V do

Viei; E; 0 > V; and E; =sets of nodes and arcs, respectively,
associated to each node
while stop=False do

(G, stop) = Reduce(G) > see Function below
740
A+ adj(9) > Build the adjacency matrix [28]
v 4 sumcolumn(A) > sum over the A columns

Xy < find(v > 3)\ P
while X, # () do
Select 7 from X,
D = SPP(G,i,PUX,\ 1) > set of shortest sub-graphs connecting i
to all nodes in X5 and P
for all d € D do
Ny < node(d); Yy < arc(d) > identification of nodes and arcs of
path d
if |[IN;N (X2 U P)|=2then > Select paths including no more
than 1 node of X5 and P

j—j+1
N Upen, o UNG Y = U,ey, B U Yy,
v = (N,Y) > Graph identifying the section

n=NN(XsUP)\i
node(G) < (node(G) \ N)U
arc(G) < arc(G)\'Y

A « adj(G)

v < sumcolumn(A)

Xy < find(v > 3)\ P
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Algorithm 2 Graph Reduction
1: function REDUCE(G)

2: A= adj(g)
3: v 4= sumcolumn(A)
4: Xy + findlo=1)\ P > leaf nodes # busbars and HV/MV
substations
5: if X; # () then
6: Select ¢ from X,
7 Jj— A(i,:) =1 > find the connected node
8: V} — V} UiJV;
9: E; + E;U(i,j)UE; > append sub-graph of node ¢ to that of j
10: node(G) < node(G) \
11: arc(G) < arc(G) \ (i,j) © remove node ¢ and arc (7, j) from the
graph
12: stop < False
13: else
14: stop < True

return (G, stop)
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