
Portfolio optimization of safety measures for reducing
risks in nuclear systems

A. Mancuso ∗1,2, M. Compare2,3, A. Salo1 and E. Zio2,3,4

1Department of Mathematics and Systems Analysis, Aalto University, Finland
2Dipartimento di Energia, Politecnico di Milano, Italy

3Aramis s.r.l., Milano, Italy
4Chair on Systems Science and Energetic Challenge, Fondation EDF, Ecole

Central Supelec, France

Abstract

In the framework of Probabilistic Risk Assessment (PRA), we develop a method to sup-
port the selection of cost-effective portfolios of safety measures. This method provides a
systemic approach to determining the optimal portfolio of safety measures that minimizes
the risk of the system and thus provides an alternative to using risk importance measures
for guiding the selection of safety measures. We represent combinations of events leading
to system failure with Bayesian Belief Networks (BBNs) which can be derived from tradi-
tional Fault Trees (FTs) and are capable of encoding event dependencies and multi-state
failure behaviours. We also develop a computationally efficient enumeration algorithm to
identify which combinations (portfolios) of safety measures minimize the risk of failure at
different costs of implementing the safety measures. The method is illustrated by revisit-
ing an earlier case study concerning the airlock system of a CANDU Nuclear Power Plant
(NPP). The comparison of results with those of choosing safety measures based on risk
importance measures shows that our approach leads to considerably lower residual risk at
different cost levels.
Keywords: Bayesian Belief Networks, Portfolio Optimization, Risk Analysis, Safety bar-
riers, Risk Importance Measures
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Nomenclature

V set of nodes

N number of nodes

V L ⊂ V set of leaf nodes

V D ⊂ V set of dependent nodes

V T ⊂ V set of target nodes

V A ⊆ V set of nodes at which safety measures can be implemented

E set of arcs

V i
− set of predecessors of node i ∈ V

di depth of node i ∈ V

Ai set of possible safety measures at node i ∈ V A

zia ∈ {0, 1} binary decision variable for indicating safety measure a ∈ Ai

Xi random variable representing the uncertainty in the state of the event at node i ∈ V

S i set of states of the event at node i ∈ V

PXi(s) probability of the event that node i ∈ V L is in state s ∈ S i

PXi
a
(s) probability of the event that node i ∈ V L is in state s ∈ S i given the implementation

of safety measure a ∈ Ai

QXi(s) total probability of the event that node i ∈ V is in state s ∈ S i

ut(s) disutility function of state s ∈ St at node t ∈ V

U t(s) expected disutility of state s ∈ St at node t ∈ V

Ra(s) Risk Reduction Rate of safety measure a ∈ Ai in state s ∈ S i

ca cost of safety measure a ∈ Ai

Λ time periods

r annualized discount rate
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1 Introduction

In the nuclear industry, Probabilistic Risk Assessment (PRA) is used for identifying the
risk importance of events or components [1]. For quantifying importance, Risk Importance
Measures (RIMs), such as Risk Reduction Worth (RRW), Fussel-Vesely (FV), Risk Achievement
Worth (RAW), are used to rank the component failure events, whereafter the available budget
for system safety improvements ([2], [3]) is allocated based on this ranking. This leads to an
iterative procedure in which the most risky components are identified sequentially and safety
measures are then applied to reduce their failure probabilities [1]. The procedure is repeated
until the budget for safety measures is depleted or the risk becomes acceptable with respect to
a given predefined criterion [4].

However, the resulting portfolio of safety measures may not be optimal, because the
safety measures for the identified risk-important components are chosen one at a time, while
systemic cost and feasibility constraints are considered only later. To address this issue, Zio
and Podofillini [5] propose an approach based on genetic algorithms to find optimal inspection
periods of system components with respect to (i) cost reduction, (ii) increase in system reliability
and (iii) reduction of the mutual differences among the importance values of the components.
Even so, this approach does not ensure that the portfolios of safety measures are cost-efficient
in terms of reducing the risk of the system most.

Building on the principles of cost-benefit analysis, Vesely [6] develops a method to reallo-
cate resources so that the relative cost expended on an activity or requirement is equal to its
relative risk importance. This approach evaluates single activities and consequently does not
analyze all the combinations (portfolios) of events leading to system failure. As a result, the
identified strategies can be suboptimal.

In the framework of Portfolio Decision Analysis (PDA, [7]), Toppila and Salo [8] propose
a portfolio optimization approach in which coherent Fault Trees [9] are used to model the
system reliability and to solve the redundancy allocation problem [10], accounting also for the
uncertainties in the occurrence probabilities of the basic events. However, this approach focuses
mainly on modelling how the risk reduction portfolios impact the probability of system failure
in order to determine when optimal portfolios lead to biggest improvements in system reliability
at different cost levels.

As pointed out also by Toppila and Salo [8], using FTs for risk analysis has some limita-
tions. Indeed, in spite of the clear visual representation of the analyzed combinations of events
leading to system failure ([11], [12]), they are not suitable for describing multi-state component
behaviours (e.g., "No leakage", "Minor leakage" and "Major leakage" for a component leakage
failure, [13], [14]).

In this paper, we propose a PRA-based decision support methodology to identify the
optimal portfolio of safety measures that minimizes the residual system risk while accounting
for feasibility and budget constraints. The methodology represents the combinations of events
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leading to system failure as BBNs ([15], [16]), which overcome the limitations of FTs by offering
the possibility of modelling multi-state events and extending the concepts of AND/OR gates.

The approach can be readily deployed by mapping FTs into BBNs [17] in which the BBN
nodes represent events of the FT and the arcs represent causal dependencies among them.
The occurrence probabilities of the basic events, and the conditional probability tables of the
intermediate events and top event, can be either inferred by statistical analysis or elicited from
experts, depending on the available knowledge, information and data.

The rest of the paper is structured as follows. Section 2 presents the methodology, i.e., the
BBN representation, the optimization formulation and its implementation as an enumeration
algorithm. Section 3 revisits the case study concerning the airlock system of a CANDU NPP
[18] and gives a comparison with the selection of safety measures based on RIMs. Section 4
discusses the potential of the proposed method further. Finally, Section 5 concludes the paper
and outlines extensions for future research.

2 Problem formulation

We assume that the FT has already been converted into the corresponding BBN, for
instance by the method proposed by Khakzad et al. [17]. Formally, a BBN is a directed acyclic
graph consisting of:

• Nodes V = {1, ..., N}, shown as circles, represent the FT random events whose combi-
nations can lead to system failure. More specifically, when the FT is converted into the
BBN, some FT events can be merged to the same node; in general, there is no one-to-one
correspondence between FT events and BBN nodes [17]. The target nodes for the risk
analysis are indicated by the set V T ⊂ V and are shown as rounded squares. The set V T

includes the node associated with the top event of the FT [9], but it can contain other
nodes which represent possible failures that deserve attention in risk analysis.

• Directed arcs E ⊆ {(i, j)|i, j ∈ V, i 6= j} indicate conditional dependencies among nodes.
Specifically, the arc (j, i) ∈ E which connects node j ∈ V to node i ∈ V indicates that
the event at node i is conditionally dependent on the event at node j.

The immediate follower nodes of i ∈ V form the set V i
+ = {j|(i, j) ∈ E}, whereas

its immediate predecessor nodes are in the set V i
− = {j|(j, i) ∈ E}. Thus, all nodes can be

partitioned into the set of leaf nodes V L = {i ∈ V |V i
− = ∅} and its complement set of dependent

nodes V D = V \V L = {i ∈ V |V i
− 6= ∅}.

A path is a sequence of nodes (i1, i2, ..., iη), η > 1 such that (ij, ij+1) ∈ E, j < η. Because
the BBN is acyclic, there is no path (i1, i2, ..., iη), η > 1 such that (ij, ij+1) ∈ E, j < η and
i1 = iη.
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For every node i ∈ V , its depth in the network can be calculated recursively by

di =

{
0, V i

− = ∅
1 +maxj∈V i

−
dj, V i

− 6= ∅
. (1)

In our methodology, it is possible to apply safety measures at a set of action nodes V A ⊆ V

at which the probability distribution for random events can be modified. Specifically, at each
action node, there is a decision on which of a finite number of alternative safety measure(s) will
be applied, if any. The nodes V A are indicated by a square over the circle.

Formally, at node i ∈ V A, the set of alternative safety measures is Ai = {1, ..., |Ai|},
where | · | is the cardinality of the set. In general, the safety measures differ in terms of their
impact on risk reduction and cost of implementation.

Specifically, the choice on the safety measure at node i ∈ V A is indicated by the binary
decision variable zia, which is 1 if a ∈ Ai is applied and 0 if not. Thus, the portfolio of safety
measures A ⊆ Xi∈V AAi is defined by the binary vectors zi = [zia], ∀a ∈ Ai, where Xi∈V A

indicates the Cartesian product of sets Ai. There are no safety measures available for nodes
i ∈ V \V A: this is modelled by Ai = ∅ so that |Ai| = 0.

Figure 2 illustrates an example of a BBN, where V L = {1, 2, 3, 4, 5, 6, 7, 8}, V D =

{9, 10, 11, 12, 13, 14}, V T = 14 and safety measures can be applied at nodes i ∈ V A =

{1, 2, 3, 4, 5, 6, 7, 8, 13}. For instance, if there are three possible safety measures at nodes i ∈ V A,
then one possible portfolio of safety measures is A = {a1

2, a
2
1, a

3
3, a

4
1, a

5
3, a

6
2, a

7
1, a

8
2, a

13
3 }, where the

superscript and the subscript indicate the node and the safety measure index, respectively.
Thus, the portfolio A is uniquely defined by the binary vectors

zi = [1, 0, 0], i ∈ {2, 4, 7}

zi = [0, 1, 0], i ∈ {1, 6, 8}

zi = [0, 0, 1], i ∈ {3, 5, 13}.

We define the binary vector z as the concatenation of vectors zi, ∀i ∈ V A such that

zk =

{
zi
∗

k , i∗ = min{j|j ∈ V A}, k = 1, 2, ..., |Ai∗|
zj
∗

k−q, k = |Ai∗|+ 1, ...,
∑

i∈V A |Ai|,
(2)

where

j∗ = min{j ∈ V A|
j∑
i=1

|Ai| ≥ k}, (3)

q =

j∗−1∑
i=1

|Ai|. (4)

Thus, the relation between z and the portfolio A is a bijection. In the previous example, the
vector z for the portfolio A is

z = [0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1].

The size of the binary vector z is m =
∑

i∈V A |Ai|.
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2.1 Characterization of conditional probability tables

The conditional probability distributions extend the concept of the AND/OR gates in the
FT. This gives more flexibility than FTs for modelling how combinations of events can lead to
system failure. For example, Figure 1 shows a generic FT characterized by an AND gate and
its corresponding BBN obtained with the methodology proposed by Khakzad et al. [17].

Figure 1: Correspondence between FT (left) and BBN (right).

The rules provided by the AND gate in Figure 1 are reported on the left side in Table 1.
This information leads to the conditional probability table of the BBN. Specifically, the right
side in Table 1 relies on the BBN in Figure 1 reflecting the logic of the AND gate. However,
in contrast to the binary logic of the FT, the BBN makes it possible to specify the probability
distribution. For instance, in the right side in Table 1 the event C occurs with probability 98 %
if the events A and B occur simultaneously, whereas the probability is reduced to 3 % if either
A or B does not occur and to 1 % if none of them occurs.

Table 1: Conditional probability tables for FT (left) and BBN (right).

PXC C C

A
B 1 0
B 0 1

A
B 0 1
B 0 1

PXC C C

A
B 0.98 0.02
B 0.03 0.97

A
B 0.03 0.97
B 0.01 0.99

Conditional probabilities can be derived from expert judgements and statistical analyses.
When the conditional probability tables are elicited from experts, systematic approaches can
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be adopted to reduce the number of statements needed. For instance, the noisy-OR model
([19], [20]) or the β-factor model ([21], [22]) can be used for this purpose.

2.2 Optimization model

The impact of a safety measure on what combination of events causes system failure
depends on the severity of the failure and how effective the safety measure is in counteracting
this combination.

Let Xi be the random variable representing the uncertainty in the state of event at node
i ∈ V . The realization s of Xi belongs to the set of states S i = {0, ..., |S i|}, where state s = 0

indicates that the event at node i ∈ V does not occur whereas states s > 0 refer to events of
increasing magnitude of failure and thus increasing severity of consequences [9]. For example,
in Figure 2 the different states of node "Pipe leakage" (i = 3) are: "No pipe leakage" (s = 0),
"Minor pipe leakage" (s = 1), "Major pipe leakage" (s = 2).

Uncertainty about the realization of Xi of the event at node i ∈ V L is modelled through
the probability mass distribution PXi(s) = p({Xi = s}) ≥ 0 such that∑

s∈Si
PXi(s) = 1, ∀i ∈ V L. (5)

At leaf nodes i ∈ V L∩V A where safety measures can be applied, applying a safety measure
a ∈ Ai modifies the probability distribution by turning PXi(s) into PXi

a
(s), where∑

s∈Si
PXi

a
(s) = 1, ∀a ∈ Ai. (6)

Without losing generality, we can assume that the safety measures at node i ∈ V A are
mutually exclusive. This implies that at most one safety measure can be selected from set Ai

so that the following inequality holds∑
a∈Ai

zia ≤ 1, ∀i ∈ V A. (7)

Thus, the probability that the event at node i ∈ V L ∩ V A is in state s ∈ S i is

QXi(s) =
∑
a∈Ai

zia PXi
a
(s). (8)

At every dependent node i ∈ V D, the probability PXi(s) is conditional on the states of the
random variables at its predecessor nodes. To model this relationship, we define the random
variable Xi

− as the |V i
−|-dimensional vector composed of the random variables Xj, ∀j ∈ V i

−.
Let S i− be the set of the Cartesian product of all the sets of states Sj, j ∈ V j

−. Then, a
possible realization of Xi

− is indicated by the vector xi ∈ S i−, whose j-th entry xij represents the
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realization of the corresponding random variable Xj, j ∈ V i
−. Then, the conditional probability

of state s ∈ S i of the event at node i ∈ V D ∩ V A, given xi ∈ S i−, is

QXi|xi(s) =
∑
a∈Ai

zia PXi
a|xi(s) (9)

where PXi
a|xi(s) is the conditional probability of state s ∈ S i of the event at node i ∈ V D ∩V A,

given the realization xi of its predecessors and that the safety measure a ∈ Ai is applied to
mitigate the event at node i ∈ V D ∩ V A.

The total probability of state s ∈ S i of the event at node i ∈ V D ∩ V A can now be
expressed recursively as

QXi(s) =
∑

xi∈Si−

[∑
a∈Ai

zia PXi
a|xi(s)

] ∏
j∈V i
−

QXj(xij), (10)

where the first summation is taken over all possible realizations xi ∈ S i−. Here the total
probability QXi(s) is a multiplicative function of the safety measures that have been applied
along the paths leading from the leaf nodes to i ∈ V D. Note that for leaf nodes, the term
QXj(xij) on the right side is obtained from (8).

As mentioned in Section 1, the objective of the analysis is to evaluate the risk at the
target nodes t ∈ V T for different impacts of the portfolio of safety measures. The risk at node
t ∈ V T is not acceptable if the probability PXt(s) is greater than the accepted threshold for at
least one state s ∈ {1, ...,St}. We assume that the larger the value of the realized state Xi = s,
the larger the magnitude of failure, then the smaller the probability threshold.

The expected disutility assigned to the target node t ∈ V T given the portfolio z is

U t(z) =
∑
s∈St
QXt(s) ut(s) (11)

where ut(·) is the disutility function for quantifying the severity of state s ∈ St [24]. Namely,
ut(s) = 0 if state s ∈ St refers to an event of negligible consequences, whereas ut(|St|) = 100.
If |St| > 2, then the other intermediate states s ∈ St\{0, |St|} can be assigned disutilities
ut(s) ∈]0, 100[ by expert judgements, with reference to the enclosing points ut(0) and ut(|St|).

Estimates for ut(s), ∀s ∈ St can be elicited through trade-off weighing approaches
SMART [23], SWING [24] or SMARTS [25] by treating the states s ∈ St as alternatives. If
the target node t ∈ V T represents a binary event, the goal is to minimize the total probability
QXt(1) by setting ut(0) = 0 and ut(1) = 100.

Finally, different safety measures a ∈ Ai have different costs ca: the optimization model
accounts for the overall cost of the portfolio, which must not exceed the available budget B.

Let m =
∑

i∈V A |Ai| be the size of the binary vector z, the selection of safety measures
for a single target node t ∈ V T is formalized as the following portfolio optimization problem

z∗ = arg min
z⊆{0,1}m

U t(z) (12)
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QXi(s) =
∑
a∈Ai

zia PXi
a
(s) ∀i ∈ V L ∩ V A (13)

QXi(s) =
∑

xi
−∈Si−

[∑
a∈Ai

zia PXi
a|xi(s)

] ∏
j∈V i
−

QXj(xij) ∀i ∈ V D ∩ V A (14)

subject to the constraints ∑
a∈Ai

zia ≤ 1, ∀i ∈ V A (15)

∑
i∈V A

∑
a∈Ai

zia ca ≤ B (16)

zi ∈ {0, 1}|Ai| ∀i ∈ V A. (17)

The calculation of the total probabilities QXi(s) starts from the leaf nodes i ∈ V L and
proceeds to those at the dependent nodes i ∈ V D by increasing the node depth di in (1). This is
necessary because the calculation of the total probability QXi(s) requires the total probabilities
QXj(s) of all the predecessors j ∈ V i

−.
It is possible to introduce additional constraints which specify requirements of the system.

For instance, with reference to Figure 2, if the safety measures for reducing the probability of
"Gearbox failure" (i = 6) and "Exhaust pipe failure" (i = 7) are mutually exclusive, the
following constraint holds ∑

a∈A6

z6
a +

∑
a∈A7

z7
a ≤ 1. (18)

On the other hand, if at least one safety measure at nodes i = 6 and i = 7 must be
applied, the corresponding constraint is∑

a∈A6

z6
a +

∑
a∈A7

z7
a ≥ 1. (19)

The same safety measure can impact different nodes or several safety measures must be
applied simultaneously. If a safety measure a impacts two different nodes i, j ∈ V A, then
this measure must be included in both sets Ai and Aj, making it necessary to introduce the
constraint

zia = zja. (20)

Furthermore, to avoid the double-counting of the cost ca of such safety measure a, this cost can
be fully allocated to the safety measure a ∈ Ai and set the cost of the safety measure a ∈ Aj

to zero.
If two different safety measures a ∈ Ai and a′ ∈ Aj must be applied simultaneously (i.e.,

safety measure a ∈ Ai can be applied if and only if safety measure a′ ∈ Aj is applied too), the
corresponding constraint is

zia = zja′ . (21)

Such additional constraints limit the set of feasible solutions and, thus, affect the resulting
optimal portfolio of safety measures.
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2.3 Optimization algorithm

For identifying the optimal portfolio of safety measures, we have developed the implicit
enumeration algorithm in Appendix, based on Liesiö [26]. While the algorithm is computa-
tionally viable, its computational time depends on the number of nodes of the BBN and the
amount of alternative safety measures per node.

The algorithm identifies the optimal portfolio z∗ by first discarding the non-feasible solu-
tions and, then, by evaluating the ones minimizing the expected disutility U t of the single target
node t ∈ V T . Although the detailed algorithm is presented for the single-objective problem
(|V T | = 1), we note that it can be readily extended to multiple target nodes (|V T | > 1). To
this aim, we propose two different approaches.

First, according to the traditional risk analysis approach, the experts can introduce ad-
ditional constraints so that the total probability Qt(s) of states s ∈ St\0 must not exceed the
acceptable threshold εt(s) such that

Qt(s) ≤ εt(s), ∀t ∈ V T . (22)

The values of εt(s) are usually provided by regulatory committees for NPP applications, for
instance the United States Nuclear Regulatory Commission. The constraints must be fulfilled so
that the risk of each target node is acceptable. However, it is also possible that the constraints
limit the set of feasible solutions so much that no portfolios are feasible. By applying this
approach, the problem would still be modelled as a single-objective optimization.

On the other hand, a multi-objective optimization problem would account for the expected
disutility U t of all the target nodes t ∈ V T . This way, the optimal portfolio of safety measures
would be selected among the Pareto optimal frontier, i.e. the set of non dominated portfolios of
safety measures [27]. Specifically, let t1 ∈ V T and t2 ∈ V T be two target nodes whose expected
disutilities are U t1 and U t2 . In risk analysis there is often no explicit preference structure
between the nodes. In this case, it is helpful to identify the entire Pareto optimal frontier,
whose dominance condition between two portfolios z′ and z′′ is defined by

z′ � z′′ ⇔

{
U t1(z′) ≤ U t1(z′′) ∧ U t2(z′) < U t2(z′′)
U t1(z′) < U t1(z′′) ∧ U t2(z′) ≤ U t2(z′′)

, (23)

where U t(z) represents the expected disutility at node t ∈ V given by the portfolio z.

3 CANDU NPP airlock system case study

We illustrate our methodology by revisiting the Design Basis Accident (DBA) that oc-
curred in the airlock system of a CANDU NPP in 2011 ([18], [28]). The Airlock System (AS)
is a safety system which keeps the pressure of the inner side of the reactor vault lower than the
outer side. This pressure difference prevents the dispersion of contaminants from the reactor
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bay in case of failure. Specifically, the AS consists of a vessel in the containment wall of the
reactor vault and its doors allow the operators to access the vault for inspection. One door
opens towards the inside, the other towards the outside.

At least one airlock door must be closed to guarantee the negative pressure drop. Each
door is closed by a latch and by seals which are inflated by the air system. In case of a
failure, the inflation of the seals must be switched to the back-up air supply tank. A pressure
equalizer system, which can be activated only once the door latch is detected in closed position,
is designed to equalize the pressure between the reactor bay and the service side and, therefore,
to control the air flow between these two areas.

The target node represents the event that the single door cannot be tightened so that the
airlock system fails to maintain the pressure boundary (Appendix 7.2, [18]). For simplicity, we
do not replicate the same FT for the second door of the airlock system.

Possible causes for the occurrence of this target node are:

• Failure of the pressure equalizer system: This event is due to the combination of the gear
box failure (which does not allow vents to open and close on-demand) and the failure to
close the exhaust pipe (which prevents the equalizer from reaching the desired pressure
level).

• Door failure: The door fails to close because the latches are not locked.

• Sealing system failure: This event can be caused by either (i) a failure in inflating the
seals (which is due to a failure to open the valve controlling the inflation, a major pipe
leakage spreading out the inflating air or a failure to engage the back-up tank) or (ii)
continuous air deflating (which requires that (i) the back-up tank is already empty and
can no longer compensate the air deflating and that (ii) there is a failure in the inflating
air piping system). The piping failure can be caused by a crack in the seal, a pipe leakage
or a valve failure.

The FT in Appendix 7.2 is transformed into the BBN in Figure 2 in which every leaf node
corresponds to a basic event of the FT, except for the two events "Minor pipe leakage" and
"Major pipe leakage", which are combined into the joint event "Pipe leakage" with three states:
"No leakage", "Minor leakage" and "Major leakage". In particular, the events "Minor pipe
leakage" and "Major pipe leakage" are not independent. This would be difficult to model in
a FT, whereas a BBN can handle this situation by combining the events into one single node
defined by different states.

The BBN resembles the top-down structure of the FT, with arcs connecting consequent
events to model the failure scenarios. Statistical analyses and expert opinions can be used to
define the prior probabilities and the conditional probability tables of the BBN. These tables
also capture the rules of the AND/OR gates of FT.
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Figure 2: BBN for the airlock system failure.

Table 2 lists the safety measures aij, i ∈ V A = {1, 2, 3, 4, 5, 6, 7, 8, 13}, j ∈ {1, 2, ..., |Ai|}
that can be applied to the events at nodes i ∈ V A to mitigate the event at the target node
t = 14. Although most safety measures apply to leaf nodes, our approach can accommodate
situations in which safety measures are applied at nodes whose depth is di > 1.

Specifically, we consider the safety measure "Synergy" (a13
1 ∈ A13) applied to mitigate

the event "Pressure equalizer failure" (i = 13) at the second level d13 = 2. This safety measure
represents the combination of safety measures "Periodic test" (a6

1 ∈ A6) and "Inspection plan"
(a7

1 ∈ A7), such that

2za131 ≤ za61 + za71

za131 ≥ za61 + za71 − 1.
(24)

The synergy does not reduce risks, but saves costs by c13
1 = −30 ke for joined inspections at

the gearbox and the exhaust pipe. We define the cost of the safety measure aij ∈ Ai as cij = caij
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(fourth column in Table 2).
Furthermore, the possibility to take several alternative safety measures simultaneously at

the same node can be captured by explicitly modelling different combinations of safety mea-
sures. For example, consider the safety measure "Joined actions" (a2

3 ∈ A2) which represents
a combination of the safety measures "Calibration test" (a2

1 ∈ A2) and "Sensor" (a2
2 ∈ A2) at

the node "Valve failure" (i = 2) such that the optimization model can select either one of the
two separate safety measures or both. To this aim, the safety measure "Joined actions" is mod-
elled as an additional safety measure, which accounts for the joint impact on the probability of
"Valve failure" and the cost of the combined safety measures "Calibration test" and "Sensor".
This additional safety measure avoids the need to account for the same probabilities multiple
times and circumvents the limitation of applying a single safety measure at each node.

In this example, we simplify the data elicitation process by assigning Risk Reduction
Rates Ra(s) to every safety measure a ∈ Ai. These safety measures modify the occurrence
probability of the state s ∈ S i\0 of the event at node i ∈ V A so that

PXi
a
(s) = PXi(s) ·Ra(s). (25)

In general, the Risk Reduction Rates Ra(s) can depend on the states s, but they can be equal
for all s ∈ S i. Illustrative values of the Risk Reduction Rates are shown in the fifth and sixth
columns of Table 2.

Finally, the cost of a safety measure (fourth column in Table 2) can be due to large initial
capital investments or the accumulation of periodic expenses over the life cycle. To compare
portfolios of safety measures, the cost of a safety measure can be discounted over the life cycle.
In this respect, the annualized cost of a safety measure a ∈ Ai is calculated over the set Λ of
time periods as

ca =
∑
λ∈Λ

cλa
(1 + r)λ

, (26)

where cλa represents the cost of safety measure a ∈ Ai at period λ ∈ Λ and r is the discounted
rate to account for the life cycle of the system [29].

For instance, in Table 2, we consider three different safety measures for reducing the
probability of "Pipe leakage" (i = 3): "Outer inspection" (a3

1 ∈ A3), "Inner and outer inspec-
tion" (a3

2 ∈ A3) and "Protection coating" (a3
3 ∈ A3). The first two involve planned inspections

over Λ = {0, 1, 2, 3} time periods, whereas the last one is an asset investment over the same
planning horizon. If the two inspections per period cost cλ

a31
= 4 ke/inspection and cλ

a32
= 6

ke/inspection, the discounted costs of these two safety measures using an annualized rate
r = 0.05, are

c3
1 = 8 +

8

1.05
+

8

1.052
+

8

1.053
= 29.8 ≈ 30ke (27)

c3
2 = 12 +

12

1.05
+

12

1.052
+

12

1.053
= 44.7 ≈ 45ke. (28)
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On the other hand, the safety measure "Protection coating" has an initial expense of
60 ke and a further maintenance intervention of 12 ke at the third time period. Thus, the
annualized cost of this safety measure is

c3
3 = 60 +

12

1.053
= 70.3 ≈ 70ke. (29)

Illustrative annualized costs of the safety measures are reported in Table 2.

Table 2: Parameters of the safety measures.

Node Index Safety measure ca[ke] Ra(1) Ra(2)

Cracked
seals

a1
1 Inspection plan 60 10−3 -
a1

2 Duplicating 80 10−4 -

Valve
failure

a2
1 Calibration test 30 10−1 -
a2

2 Sensor 40 10−2 -
a2

3 Joined actions 60 10−4 -

Pipe
leakage

a3
1 Outer inspection 30 10−1 10−1.5

a3
2 Inner and outer inspection 45 10−2 10−2.5

a3
3 Protection coating 70 10−3 10−3

Tank failure a4
1 Improving reliability 80 10−4 -

Empty tank a5
1 Level sensor 60 10−3 -

Gearbox
failure

a6
1 Periodic test 40 10−2 -
a6

2 Condition monitoring 100 10−5 -

Exhaust pipe failure a7
1 Inspection plan 40 10−2 -

Door failure a8
1 Periodic test 60 10−4 -

Pressure equalizer failure a13
1 Synergy -30 1 -

The optimization model in Section 2.2 determines the optimal portfolios of safety measures
that minimize the risk of the target node. Solutions have been found for different values B of
the budget constraint (horizontal axis in Figure 3 and Figure 4).

Figure 3 shows the minimum probability of the airlock system failure that can be obtained
by applying the optimal portfolio of safety measures, Figure 4 shows the optimal safety measure
for every action node i ∈ V A in Figure 2 as a function of the available budget.

From Figure 3, we see that the minimum probability of airlock system failure remains
practically the same for B ≥ 230 ke whereafter the risk reduction due to additional safety
measures becomes negligible. As shown in Figure 4, if the budget is at least 230 ke, the optimal
portfolio already contains the inspection of the door, the joined actions on the valve and the
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reliability improvement of the tank. These events are directly linked to the target node by
OR gates; thus, reducing their failure probabilities significantly reduces the probability of the
airlock system failure. In contrast, the effects of other safety measures become negligible.

Figure 3: Probability of airlock system failure.

If the budget is low, safety measures should be applied to limit the events "Valve failure"
and "Pipe leakage" because they impact two different nodes, "Piping failure" and "Not inflating
seals". The safety measure "Synergy" (a13

1 ∈ A13) is applied only if "Periodic test" (a6
1 ∈ A6)

and "Inspection plan" (a7
1 ∈ A7) also belong to the optimal portfolio, as modelled in (24).
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Figure 4: Optimal safety measure per event.

The portfolios of safety measures in Figure 4 are globally optimal in the sense that they
minimize the failure probability of the airlock system while accounting for feasibility and budget
constraints, instead of selecting safety measures that target the riskiness of the single events.

3.1 Comparison with a Risk Reduction Worth-based procedure

Risk Reduction Worth (RRW) is a risk importance measure which quantifies the maximum
risk reduction that can be attained by setting the probability PXi(s), s > 0 at node i ∈ V A

to zero (see [2], [3] and [4] for details). This measure only applies to binary FTs, in which
S i = {0, 1}, ∀i ∈ V in our framework. Thus, it is necessary to apply small changes to the
example in Section 3.

Once the components which contribute most to the improvement are identified, the expert
can iteratively select safety measures to be applied. Namely, at iteration τ = 1, the RRW values
are computed for every node i ∈ V A as

RRW i
τ =

W t
τ

W t|i
τ

, (30)

where W t
τ is the risk of the realization of the event Xt = 1 at the target node t ∈ V T (i.e.,

the node related to the event of "Airlock system failure") and W t|i
τ is the risk of the realization

Xt = 1 of the target node t ∈ V T assuming PXi(0) = 1, i.e. the realizations Xi ≥ 1 of the
event at node i ∈ V A have been eliminated. We evaluate the risk W t of the target node by the
expected disutility U t in (11). On this basis, at iteration τ = 1, the node i∗τ is selected so that

i∗τ = arg max
i∈V L

RRW i
τ , (31)
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whereafter experts decide which one out of appropriate safety measure(s) will be applied to
reduce the risk of the event i∗τ ∈ V L ∩ V A.

This procedure can be repeated at iteration τ = 2 to determine the node i∗τ=2, which has
the most risk reduction potential, given that a safety measure has been applied at node i∗τ=1.
Then, the procedure is iterated until the budget has been depleted or the residual risk of the
target node has been reduced to an acceptable level.

We illustrate this approach by analyzing the airlock system. At each iteration τ , we
calculate the values of RRW for nodes i ∈ V A = {1, 2, 3, 4, 5, 6, 7, 8} of which safety measures
can be applied (Figure 2). We do not consider the safety measure "Synergy" (a13

1 ∈ A13),
because Ra131

(1) = 1, i.e. it does not have any additional impact on risk with respect to the two
safety measures a6

1 and a7
1 that lead to this synergy.

At iteration τ = 1, "Valve failure" (i = 2) has the largest RRW value

RRW1 = [≈ 1;≈ 10;≈ 1; 1.01;≈ 1;≈ 1;≈ 1; 1.009]. (32)

At node "Valve failure" (i = 2), two possible safety measures can reduce the risk of the
target node. If the safety measure "Sensor" (a2

2 ∈ A2) is chosen to prevent "Valve failure", the
RRW values at iteration τ = 2 are

RRW2 = [≈ 1; 1.09;≈ 1; 5.76;≈ 1;≈ 1;≈ 1; 1.1]. (33)

Continuing, after the safety measure "Sensor" to reduce the probability of "Valve failure"
(i = 2) has been applied, the event "Tank failure" (i = 4) has the most potential for risk
reduction. At this node, the only safety measure "Improving reliability" (a4

1 ∈ A4) is also one
of the most expensive, meaning that most of the available budget will be used, so that less
expensive safety measures cannot be applied.

At iteration τ = 3, after the safety measure to prevent "Tank failure" has been applied,
we calculate the RRW values

RRW3 = [≈ 1; 1.9; 1.05;≈ 1;≈ 1;≈ 1;≈ 1; 1.9]. (34)

The events "Valve failure" (i = 2) and "Door failure" (i = 8) have the highest RRW values, in
particular RRW 2

3 = RRW 8
3 .

If the safety measure "Sensor" (a2
2 ∈ A2) is applied to mitigate the event "Valve failure",

the safety measure "Periodic test" (a8
1 ∈ A8) is applied to prevent the event "Door failure".

This way, at iteration τ = 4, this approach would lead again to safety measures on the event
"Valve failure" (i = 2), given that

RRW4 = [≈ 1; 10.9; 1.01;≈ 1;≈ 1;≈ 1;≈ 1;≈ 1]. (35)

If a second safety measure is applied to reduce the risk of this event, the joined actions may
not have the same parameters of the two separate safety measures. Table 2 shows that

Ra23
(1) 6= Ra21

(1) ·Ra22
(1) (36)
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c2
3 6= c2

1 + c2
2. (37)

Thus, if both safety measures at node "Valve failure" (i = 2) are applied, the solution would
change, because the synergy in their Risk Reduction Rates would modify the RRW values at
the iteration where the first safety measure has been applied (τ = 1). Moreover, unlike our
methodology, RIM-based procedures do not account for the eventual cost saving given by the
combination of the safety measures "Inspection plan" (a6

1 ∈ A6) and "Periodic test" (a7
1 ∈ A7).

4 Discussion

The case study highlights one of the main advantages of framing the problem of selection
of safety measures through PDA. The model does not target the riskiness of the single events;
rather, it identifies the optimal portfolio of safety measures for the overall system and thus
overcomes the limitations of taking decisions based on the iterative computation of RIMs and
the choice of safety measures one-by-one.

Moreover, the BBN model of the system failure makes it possible to generalize the concepts
of AND/OR gates. The impacts of the safety measures are modelled by updating the probability
distributions of the affected nodes in the BBN. As a result, structural changes to the system,
most notably those that correspond to the introduction/removal of nodes or dependencies
between the nodes, call for revisions to the model itself. Specifically, the introduction/removal
of dependencies call for changes in the dimensions and parameters of the conditional probability
tables. In contrast, changes resulting from the introduction/removal of new nodes makes it
necessary to introduce/remove these nodes and to elicit/revise the corresponding probability
tables, too.

The framework is flexible in that multiple states at every node can be modelled. For
example, consider the event "Pipe leakage" (i = 3) in Figure 2. The states of the leakage can
be modelled as "No leakage", "Minor leakage" and "Major leakage" and even further states
can be introduced as needed. Thus, the system representation is more realistic, although it
increases the effort in the elicitation of the conditional probability tables.

On the other hand, RIM-based procedures are limited in that they cannot be applied in
case of multi-state events or multiple target nodes. In fact, they are based on the definition of a
single target node, while our methodology can accommodate multiple target nodes as described
in Section 2.2.

Furthermore, RIM-based procedures apply to binary FTs in which safety measures can
be applied to basic events only without accounting for synergies of joined safety measures.
As shown in the preceding example, feasibility constraints or costs are considered only after
the procedure has already selected the event that seemingly offers the most potential for risk
reduction of the system failure: this could lead to an infeasible or cost-inefficient portfolio of
safety measures. For example, the budget could be run out after few expensive safety measures,
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while it could be the case that combinations of less expensive safety measures would lead to
reduce the risk of the target node more.

Cost-benefit analyses based on the ratio between the RIM and the cost of the safety
measure can also lead to infeasible or cost-inefficient portfolios of safety measures, because
RIMs evaluate the riskiness of the events while cost is a parameter of the safety measure. For
this reason, a cost-benefit analysis would support safety measures which have minimal cost in
one-by-one comparisons.

In summary, this example illustrates that RIM-based procedures, such as those based
on RRW, do not necessarily lead to an optimal solution, because at each iteration the impor-
tance measures are dependent on the previous decisions. Furthermore, the procedure involves
assumptions and expert judgements, which can affect the decisions at the following iterations
and the resulting portfolio of safety measures.

First, the RIM-based procedure does not select a specific safety measure; rather, the
experts choose the most appropriate one(s) in view of the parameters of the safety measure
parameters (annualized cost and impact on risk reduction) and the available budget. Second,
different RIMs could give different and even conflicting indications to the experts [4]. Finally,
the iteration τ = 3 in this example highlights a further pitfall of a RIM-based procedure: the
experts need support for selecting events which should be improved first. Our PDA framework
addresses these issues explicitly.

If budget is B = 350 ke, the portfolios of safety measures for the two methodologies
are in Table 3. The last row in Table 3 shows the probability of the event "Airlock system
failure" for both solutions. The solution resulting from the RRW-based procedure depends on
the authors’ decisions at each iteration.
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Table 3: Optimal set of safety measures for the two methodologies.

Node RRW approach Portfolio optimization

Cracked seals Duplicating -

Valve
failure

Sensor Sensor
Calibration test Calibration test

Pipe leakage Protection coating Protection coating

Tank failure Improving reliability Improving reliability

Empty tank - -

Gearbox failure - Periodic test

Exhaust pipe failure - Inspection plan

Door failure Periodic test Periodic test

QX14(1) 1.4173 · 10−8 1.1201 · 10−8

While safety measures are applied in both methodologies, there are also significant differ-
ences due to the lack of systemic view of the RRW-based procedure. For example, at iteration
τ = 6 the RRW-based procedure identifies "Cracked seals" (i = 1) as the most risky event
so that safety measure "Duplicating" (a1

2 ∈ A1) is applied. On the other hand, the portfolio
optimization recognizes that safety measures to prevent "Gearbox failure" (i = 6) and "Ex-
haust pipe failure" (i = 7) would reduce the risk of "Airlock system failure" at the same cost.
Moreover, for the budget B = 350 ke, our solution reduces the risk of "Airlock system failure"
to a level which is 21% less than the solution based on RRW (last row in Table 3). Note that
RRW has been adopted as a reference for the comparison, but similar issues can be expected
with the use of other RIMs as well.

In industries such as nuclear and aerospace, PRA models contain several thousands of
components to which safety measures can be applied in order to reduce the probability of
accident scenarios. In these cases, the standard approach based on RIMs is computationally
straightforward in that the potentially most important components are first identified, albeit
without analyzing how effective the available safety measures or combinations thereof are in
mitigating the probability of accident scenarios. By design, the PDA approach is computation-
ally more demanding, but it does account for the impact of the available safety measures while
analyzing the relative importance of the components.

The PDA approach can be utilized in several ways for large systems. For instance, the
experts can first employ RIMs to select computationally manageable portfolios consisting of
the most risky components and then apply the PDA approach to make cost-effective decisions
on the components within these pre-selected portfolios. The experts can also analyze portfolios
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consisting of similar or comparable components to generate guidelines as to what kinds of safety
measures are most cost-efficient for these components. Furthermore, complex PSA models are
typically hierarchically structured and can be decomposed into several indenture levels. Then,
the PDA approach can be used iteratively to first select the optimal portfolios of systems at the
highest indenture levels and to determine corresponding risk reduction rates and costs. These
solutions can be converted into requirements for the portfolio selection at the following lower
indenture levels. Future research will focus on the computational and modelling issues arising
from the application of the PDA approach to large-scale complex systems.

5 Conclusion and future research

In this paper, we have developed a methodology to support the selection of cost-efficient
portfolios of safety measures in high-risk installations. The problem has been framed within
the Portfolio Decision Analysis to support the selection of safety measures that improve the
safety of the system cost-efficiently. The feasibility of the method has been illustrated with an
example concerning an Airlock System in a CANDU NPP.

There are various opportunities for improving and extending this method. Specifically, one
limitation of the methodology can be the effort in getting sufficient information to determine the
failure probabilities and the conditional probability tables. This suggests two topics for further
work. On one hand, the optimization model could be extended to account for the imprecision
and uncertainty stemming from incomplete datasets or the qualitative statements provided by
the experts. For example, the expert may provide imprecise values of both Risk Reduction
Rates and costs of the safety measures. Such imprecision and uncertainty must be properly
represented and propagated throughout the optimization model to obtain robust solutions. On
the other hand, methods to facilitate the elicitation of parameters need to be developed so that
experts need not to answer many and complex questions, which could introduce biases as well.

A further possibility is to extend the proposed methodology to time-dependent systems,
for example to the analysis of fire scenarios [30]. In this case, the modelling of failure scenarios
and impact of safety measures become more complicated. Techniques of Integrated Determin-
istic and Probabilistic Safety Assessment [31] could be used to address these issues.
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7 Appendix

7.1 Algorithm for selecting the optimal portfolio of safety measures

The algorithm determines the optimal portfolio z∗ for the objective function U t∗ = U t(z∗).
Every portfolio of safety measures corresponds to a binary vector z = [z1, ..., zm] which is the
concatenation of vectors zi, ∀i ∈ V A as described in (2). The size of the binary vector z is
m =

∑
i∈V A |Ai|.

The model also accounts for the objective function U t(·), the budget and the feasibility
constraints. In particular, the set of feasible portfolios is defined by a set of linear inequalities,
whose coefficients are recorded in matrix R ∈ RL×m (rlj = [R]lj) and vector b = [b1, ..., bL] ∈ RL.
The set of feasible portfolios is

ZF = {z ∈ {0, 1}m|R z ≤ b} (38)

where ≤ holds component-wise.
In addition to the constraints which ensure the uniqueness of the safety measure at each
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node in (15), the set ZF accounts for feasibility and budget constraints in (16).
Data: U t(·), R, b, εi(s)
Result: z∗, U t∗
z = [0, ..., 0]T , k ← 1, z∗ ← ∅, U t∗ ←∞;
if z ∈ ZF then

z∗ ← z, U t∗ ← U t(z);
end
Loop A: while k > 0 do

Loop B : while k ≤ m do
zk ← 1;
if z ∈ ZF and U t(z) < U t∗ then

z∗ ← z, U t∗ ← U t(z);
end
if

∑k
j=1 zj r

l
j +

∑m
j=k+1 min{0, rlj} > bl ∀l = 1, ...,L then

Break Loop B
end
k ← k + 1;

end
zm ← 0;
k ← max ({j|zj = 1} ∪ {0});
if k > 0 then

zk ← 0;
k ← k + 1

end
end

Algorithm 1: The implicit enumeration algorithm.
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7.2 Airlock system Fault Tree
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system
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failure

Gearbox
failure

Exhaust
pipe failure

Seal failure

Deflating
seal

Empty
tank

Piping
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Cracked
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Valve
failure

Minor pipe
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Not
inflating
seal

Valve
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Tank
failure

Major pipe
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